首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
AtMAP65-1 bundles cortical microtubules and we examined how this property is regulated during division in time-lapse studies of Arabidopsis suspension cells expressing GFP-AtMAP65-1. Spindle fluorescence is diffuse during metaphase, restored to the central spindle at anaphase and then compacted at the midline during late anaphase/early telophase. However, mutagenesis of the microtubule-associated protein (MAP) consensus Cdk site to a non-phosphorylatable form allows premature decoration of microtubules traversing the central region of the metaphase spindle without affecting the timing of the subsequent compaction. This suggests that mutagenesis does not affect compaction but does affect a phosphorylation/dephosphorylation switch that normally targets AtMAP65-1 to the central spindle at the metaphase/anaphase transition. GFP-AtMAP65-1 continues to label the midline of the early phragmoplast, suggesting a structural continuity with the central spindle - both structures being composed of anti-parallel microtubules. However, once the cytokinetic apparatus expands into a ring the MAP becomes depleted at the midline. Despite this, cytokinesis is not arrested and membrane and callose are deposited at the cell plate. It is concluded that AtMAP65-1 plays a role in the central spindle at anaphase to early cytokinesis but is not essential at the midline of the phragmoplast at later stages.  相似文献   

2.
Surface charge in track-etched polyethylene terephthalate (PET) membranes with narrow pores has been probed with a fluorescent cationic dye (3,3'-diethyloxacarbocyanine iodide (diO-C2-(3))) using confocal microscopy. Staining of negatively charged PET membranes with diO-C2-(3) is a useful measure of surface charge for the following reasons: 1) the dye inhibits K(+) currents through the pores and reduces their selectivity for cations; 2) it inhibits [3H]-choline+ transport and promotes 36Cl- transport across the membrane in a pH- and ionic-strength-dependent fashion; and 3) staining of pores by diO-C2-(3) is reduced by low pH and by the presence of divalent cations such as Ca2+ and Zn2+. Measurement of the time dependence of cyanine staining of pores shows fluctuations of fluorescence intensity that occur on the same time scale as do fluctuations of ionic current in such pores. These data support our earlier proposal that fluctuations in ionic current across pores in synthetic and biological membranes reflect fluctuations in the surface charge of the pore walls in addition to molecular changes in pore proteins.  相似文献   

3.
N Morin  A Abrieu  T Lorca  F Martin    M Dorée 《The EMBO journal》1994,13(18):4343-4352
It has been shown, using spindles assembled in vitro in extracts containing CSF (the cytostatic factor responsible for arresting unfertilized vertebrate eggs at metaphase), that onset of anaphase requires Ca(2+)-dependent activation of the ubiquitin-dependent proteolytic pathway that destroys both mitotic cyclins and an unknown protein responsible for metaphase arrest (Holloway et al., 1993, Cell, 73, 1382-1402). We showed recently that Ca2+/calmodulin-dependent protein kinase II (CaM KII) activates the ubiquitin-dependent cyclin degradation pathway in CSF extracts (Lorca et al., 1993, Nature, 366, 270-273), but did not investigate its possible effect on sister chromatid segregation. In this work we identify CaM KII as the only target of Ca2+ in inducing anaphase in CSF extracts, and further show that transition to anaphase does not require the direct phosphorylation of metaphase spindle components by CaM KII. A possible interpretation of the above results could have been that the ubiquitin-dependent degradation pathway is required for onset of anaphase only when spindles are clamped at metaphase due to CSF activity, and not in the regular cell cycle that occurs in the absence of CSF activity. We ruled out this possibility by showing that competitive inhibition of the ubiquitin-dependent degradation pathway still prevents the onset of anaphase in cycling extracts that lack CSF and do not require Ca2+ for sister chromatid separation.  相似文献   

4.
The normally predictable duration of metaphase in stamen hair cells from the spiderwort, Tradescantia virginiana, is shortened significantly by treatment during prometaphase with either ruthenium red or Bay K-8644. Ruthenium red is an inhibitor of Ca2+ translocation and Bay K-8644 is a Ca2+-channel agonist. Their action on mitotic progression appears to involve a rise in the cytosolic Ca2+ level that in turn has a pronounced effect on the duration of metaphase. The timing of addition of ruthenium red for accelerated progression through metaphase is less critical than that for Bay K-8644 which will promote metaphase progression only if added 0 to 12 min after nuclear envelope breakdown. In contrast, ruthenium red can be added at any time from approximately 10 min prior to nuclear envelope breakdown up to 25 min afterward. A reduction of extracellular Ca2+ is sufficient by itself to prolong the duration of metaphase in stamen hair cells, but the duration of metaphase by ruthenium red or Bay K-8644 is significantly shortened in identical solutions with Ca2+ buffered at levels greater than 1 microM. Metaphase progression rates with either agent are independent of changes in extracellular Mg2+ levels. Correlated with the precocious entry into anaphase was rapid formation of the spindle and a marked reduction in spindle rotation during metaphase. Interestingly, we observed a modest increase in the rate of anaphase chromosome separation, but the appearance of cell plate vesicles at the site of incipient cell plate formation occurred normally approximately 19 min after anaphase onset. Similarly, the initial appearance of cell plate vesicles in Bay K-8644 was normal, approximately 19 min after the onset of anaphase. These results further implicate shifts in cytosolic Ca2+ in the regulation of mitotic events.  相似文献   

5.
We have quantitatively studied the dynamic behavior of kinetochore fiber microtubules (kMTs); both turnover and poleward transport (flux) in metaphase and anaphase mammalian cells by fluorescence photoactivation. Tubulin derivatized with photoactivatable fluorescein was microinjected into prometaphase LLC-PK and PtK1 cells and allowed to incorporate to steady-state. A fluorescent bar was generated across the MTs in a half-spindle of the mitotic cells using laser irradiation and the kinetics of fluorescence redistribution were determined in terms of a double exponential decay process. The movement of the activated zone was also measured along with chromosome movement and spindle elongation. To investigate the possible regulation of MT transport at the metaphase-anaphase transition, we performed double photoactivation analyses on the same spindles as the cell advanced from metaphase to anaphase. We determined values for the turnover of kMTs (t1/2 = 7.1 +/- 2.4 min at 30 degrees C) and demonstrated that the turnover of kMTs in metaphase is approximately an order of magnitude slower than that for non-kMTs. In anaphase, kMTs become dramatically more stable as evidenced by a fivefold increase in the fluorescence redistribution half-time (t1/2 = 37.5 +/- 8.5 min at 30 degrees C). Our results also indicate that MT transport slows abruptly at anaphase onset to one-half the metaphase value. In early anaphase, MT depolymerization at the kinetochore accounted, on average, for 84% of the rate of chromosome movement toward the pole whereas the relative contribution of MT transport and depolymerization at the pole contributed 16%. These properties reflect a dramatic shift in the dynamic behavior of kMTs at the metaphase-anaphase transition. A release-capture model is presented in which the stability of kMTs is increased at the onset of anaphase through a reduction in the probability of MT release from the kinetochore. The reduction in MT transport at the metaphase-anaphase transition suggests that motor activity and/or subunit dynamics at the centrosome are subject to modulation at this key cell cycle point.  相似文献   

6.
The distribution of membrane-associated calcium has been determined at various stages of mitosis in Haemanthus endosperm cells with the fluorescent chelate probe chlorotetracycline (CTC). CTC fluorescence in Haemanthus has two components: punctate, because of mitochondrial and plastid membrane-Ca++; and diffuse, primarily because of Ca++ associated with endoplasmic reticulum membranes. Punctate fluorescence assumes a polar distribution throughout mitosis. Cones of diffuse fluorescence in the chromosomse-to-pole regions of the metaphase spindle appear to coincide with the kinetochore fibers; during anaphase, the cones of fluorescence coalesce and this region of the spindle exhibits uniform diffuse fluorescence. Perturbation of the cellular Ca++ distribution by treatment with lanthanum, procaine, or EGTA results in a loss of diffuse fluorescence with no accompanying change in the intensity of punctate fluorescence. Detergent extraction of cellular membranes causes a total elimination of CTC fluorescence. CTC fluorescence of freshly teased crayfish claw muscle sarcoplasmic reticulum coincides with the A bands and is reduced by perfusion with lanthanum, procaine, and EGTA in a manner similar to that for diffuse fluorescence in the endosperm cells. These results are consistent with the hypothesis that a membrane system in the chromosome-to-pole region of the mitotic apparatus functions in the localized release of sequestered Ca++, thereby regulating the mechanochemical events of mitosis.  相似文献   

7.
Microtubule dynamics have key roles in mitotic spindle assembly and chromosome movement [1]. Fast turnover of spindle microtubules at metaphase and polewards flux of microtubules (polewards movement of the microtubule lattice with depolymerization at the poles) at both metaphase and anaphase have been observed in mammalian cells [2]. Imaging spindle dynamics in genetically tractable yeasts is now possible using green fluorescent protein (GFP)-tagging of tubulin and sites on chromosomes [3] [4] [5] [6] [7] [8]. We used photobleaching of GFP-labeled tubulin to observe microtubule dynamics in the fission yeast Schizosaccharomyces pombe. Photobleaching did not perturb progress through mitosis. Bleached marks made on the spindle during metaphase recovered their fluorescence rapidly, indicating fast microtubule turnover. Recovery was spatially non-uniform, but we found no evidence for polewards flux. Marks made during anaphase B did not recover fluorescence, and were observed to slide away from each other at the same rate as spindle elongation. Fast microtubule turnover at metaphase and a switch to stable microtubules at anaphase suggest the existence of a cell-cycle-regulated molecular switch that controls microtubule dynamics and that may be conserved in evolution. Unlike the situation for vertebrate spindles, microtubule depolymerization at poles and polewards flux may not occur in S. pombe mitosis. We conclude that GFP-tubulin photobleaching in conjunction with mutant cells should aid research on molecular mechanisms causing and regulating dynamics.  相似文献   

8.
It is well established that DNA damage induces checkpoint-mediated interphase arrest in higher eukaryotes, but recent studies demonstrate that DNA damage delays entry into anaphase as well. Damaged DNA in syncytial and gastrulating Drosophila embryos delays the metaphase/anaphase transition . In human cultured cells, DNA damage also induces a delay in mitosis . However, the mechanism by which DNA damage delays the anaphase onset is controversial. Some studies implicate a DNA damage checkpoint , whereas other studies invoke a spindle checkpoint . To resolve this issue, we compared the effects of random DNA breaks induced by X-irradiation to site-specific I-CreI endonuclease-induced chromosome breaks on cell-cycle progression in wild-type and checkpoint-defective Drosophila neuroblasts. We found that both the BubR1 spindle checkpoint pathway and the Grp/Chk1 DNA damage checkpoint pathway are involved in delaying the metaphase/anaphase transition after extensive X-irradiation-induced DNA damage, whereas Grp/Chk1, but not BubR1, is required to delay anaphase onset in the presence of I-CreI-induced double-strand breaks. On the basis of these results, we propose that DNA damage in nonkinetochore regions produces a Grp/Chk1 DNA-damage-checkpoint-mediated delay in the metaphase/anaphase transition.  相似文献   

9.
The metaphase-anaphase transition during mitosis is carefully regulated in order to assure high-fidelity transmission of genetic information to the daughter cells. A surveillance mechanism known as the metaphase checkpoint (or spindle-assembly checkpoint) monitors the attachment of kinetochores to the spindle microtubules, and inhibits anaphase onset until all chromosomes have achieved a proper bipolar orientation on the spindle. Defects in this checkpoint lead to premature anaphase onset, and consequently to greatly increased rates of aneuploidy. Here we show that the Drosophila kinetochore components Rough deal (Rod) and Zeste-White 10 (Zw10) are required for the proper functioning of the metaphase checkpoint in flies. Drosophila cells lacking either ROD or Zw10 exhibit a phenotype that is similar to that of bub1 mutants - they do not arrest in metaphase in response to spindle damage, but instead separate sister chromatids, degrade cyclin B and exit mitosis. These are the first checkpoint components to be identified that do not have obvious homologues in budding yeast.  相似文献   

10.
A checkpoint mechanism operates at the metaphase/anaphase transition to ensure that a bipolar spindle is formed and that all the chromosomes are aligned at the spindle equator before anaphase is initiated. Since mistakes in the segregation of chromosomes during meiosis have particularly disastrous consequences, it seems likely that the meiotic cell division would be characterized by a stringent metaphase/ anaphase checkpoint. To determine if the presence of an unaligned chromosome activates the checkpoint and delays anaphase onset during mammalian female meiosis, we investigated meiotic cell cycle progression in murine oocytes from XO females and control siblings. Despite the fact that the X chromosome failed to align at metaphase in a significant proportion of cells, we were unable to detect a delay in anaphase onset. Based on studies of cell cycle kinetics, the behavior and segregation of the X chromosome, and the aberrant behavior and segregation of autosomal chromosomes in oocytes from XO females, we conclude that mammalian female meiosis lacks chromosome-mediated checkpoint control. The lack of this control mechanism provides a biological explanation for the high incidence of meiotic nondisjunction in the human female. Furthermore, since available evidence suggests that a stringent checkpoint mechanism operates during male meiosis, the lack of a comparable checkpoint in females provides a reason for the difference in the error rate between oogenesis and spermatogenesis.  相似文献   

11.
Polar body formation in oocytes is an extreme form of asymmetric cell division, but what regulates the asymmetric spindle positioning and cytokinesis is poorly understood. During mouse oocyte maturation, the metaphase I spindle forms at the center but then moves to the cortex prior to anaphase I and first polar body emission. We show here that treating denuded mouse oocytes with brefeldin A, an inhibitor of Golgi-based membrane fusion, abolished the asymmetric positioning of the metaphase I spindle and resulted in the formation of two half-size metaphase II eggs, instead of a full-sized egg and a polar body. The normal metaphase II spindle is similarly asymmetrically positioned in the mature egg, where the spindle lies with its axis parallel to the cortex but becomes perpendicular before anaphase II and emission of the second polar body. When ovulated eggs were activated with strontium in the presence of brefeldin A, the metaphase II spindle failed to assume perpendicular position, and the chromosomes separated without the extrusion of the second polar body. Remarkably, symmetric cytokinesis began following a 3 h delay, forming two half-size eggs each containing a pronucleus. BFA-sensitive intracellular vesicular transport is therefore required for spindle positioning in both MI and MII.  相似文献   

12.
An Extended Anaphase Signaling Pathway for Mad2p Includes Microtubule Organizing Center Proteins and Multiple Motor-dependent TransitionsSignaling pathways within the mitotic mechanism temporally orchestrate spindle assembly withchromosome capture and alignment, and then coordinate initiation of chromosome segregationwith spindle breakdown and cytokinesis for reproductive success. Kinetochore localized Mad2pacts in the spindle assembly checkpoint pathway during prophase and prometaphase to monitorbipolar attachment of chromosomes to spindle microtubules as well as proper tension atkinetochores. Once established, Mad2p is not degraded, but instead transits to spindle polespreceding the metaphase/anaphase transition in human and yeast cells. Whether conservedrelocalization of Mad2p to poles is a final step in the spindle assembly checkpoint pathway orwhether the post-metaphase transition allows Mad2p to cooperate in anaphase events leading tomitotic exit has been unknown. We examined post-metaphase localization of Mad2p in fissionyeast. Our observations indicate an extended signaling pathway for Mad2p that includeskinetochore to bipolar localization at spindle poles, then additional transitions from bipolar tounipolar to equatorial. We determined that Mad2p associates with the microtubule organizingcenter complex through direct binding to Alp4p and that microtubule motor proteins Kinesin-14Pkl1 and Dynein contribute to Mad2p anaphase transitions. At anaphase B onset, bipolar tounipolar transitions of both Mad2p and the septation intitiation network (SIN) kinase Cdc7 areobserved. We determined that Mad2p and Cdc7p transitions monitor different events inanaphase, but that neither are required for anaphase B initiation. Our findings indicate thataltered Mad2p anaphase spindle localizations can reflect changes in spindle function duringmitotic exit that could contribute to fidelity in anaphase events.  相似文献   

13.
《The Journal of cell biology》1994,127(5):1301-1310
To test the popular but unproven assumption that the metaphase-anaphase transition in vertebrate somatic cells is subject to a checkpoint that monitors chromosome (i.e., kinetochore) attachment to the spindle, we filmed mitosis in 126 PtK1 cells. We found that the time from nuclear envelope breakdown to anaphase onset is linearly related (r2 = 0.85) to the duration the cell has unattached kinetochores, and that even a single unattached kinetochore delays anaphase onset. We also found that anaphase is initiated at a relatively constant 23-min average interval after the last kinetochore attaches, regardless of how long the cell possessed unattached kinetochores. From these results we conclude that vertebrate somatic cells possess a metaphase-anaphase checkpoint control that monitors sister kinetochore attachment to the spindle. We also found that some cells treated with 0.3-0.75 nM Taxol, after the last kinetochore attached to the spindle, entered anaphase and completed normal poleward chromosome motion (anaphase A) up to 3 h after the treatment--well beyond the 9-48-min range exhibited by untreated cells. The fact that spindle bipolarity and the metaphase alignment of kinetochores are maintained in these cells, and that the chromosomes move poleward during anaphase, suggests that the checkpoint monitors more than just the attachment of microtubules at sister kinetochores or the metaphase alignment of chromosomes. Our data are most consistent with the hypothesis that the checkpoint monitors an increase in tension between kinetochores and their associated microtubules as biorientation occurs.  相似文献   

14.
Our biopharmacological approach suggests that the now well-documented inhibitory effects of genistein on the maturation of mammalian oocytes do not seem to be related to its effect on tyrosine kinases. Indeed, we show that both tyrphostin B46 and Lavendustin A, two selective inhibitors of protein tyrosine kinases, fail to inhibit meiosis reinitiation. According to recent findings, the G2/M arrest induced by genistein could be due to inhibition of the kinase activity of cdc2. We were therefore mainly interested in dissecting the cytological effects of genistein on mouse primary and secondary oocytes. Genistein exerts the same cytological effects as IBMX on primary oocytes: their germinal vesicle is maintained in a central position, the cytoplasmic microtubule network is stabilized, the central GV immobilization is overcome by demecolcine and they complete normal maturation after their transfer to culture medium. The GV-arresting activity of genistein is also bypassed by OA but combination of both drugs results in a dramatic reorganization of the cytoskeleton leading to a huge membrane bulging, which is quite different to apoptotic-related blebbing. MAP Kinase activation is correlated with meiosis reinitiation. When applied after GVBD has taken place, genistein does not inhibit MAPK activation, metaphase spindle formation and metaphase-to-anaphase transition, but prevents the barrel-shaped MI spindle from undergoing its peripheral migration and the oocytes from extruding their first polar body. It may thus be concluded that the checkpoint control for anaphase onset is unaffected by the drug. On the contrary, our results suggest that spindle anaphase A to spindle anaphase B transition, spindle degradation, mid-body formation and cytokinesis are triggered by a genistein-sensitive mechanism that might be a mid-anaphase checkpoint. Finally, we confirm that genistein induces transition to interphase in metaphase II oocytes but never induces cortical granule exocytosis, the cytoplasmic hallmark of activation.  相似文献   

15.
《Cellular signalling》2014,26(10):2217-2222
The spindle assembly checkpoint (SAC) monitors unsatisfied connections of microtubules to kinetochores and prevents anaphase onset by inhibition of the ubiquitin ligase E3 anaphase-promoting complex or cyclosome (APC/C) in association with the activator Cdc20. Another APC/C activator, Cdh1, exists permanently throughout the cell cycle but it becomes active from telophase to G1. Here, we show that Cdh1 is partially active and mediates securin degradation even in SAC-active metaphase cells. Additionally, Cdh1 mediates Cdc20 degradation in metaphase, promoting formation of the APC/C-Cdh1. These results indicate that Cdh1 opposes the SAC and promotes anaphase transition.  相似文献   

16.
Dinoflagellates are a major group of organisms with an extranuclear spindle. As the purpose of the spindle checkpoint is to ensure proper alignment of the chromosomes on the spindle, dinoflagellate cell cycle control may be compromised to accomodate the extranuclear spindle. In the present study, we demonstrated that nocodazole reversibly prolonged the G2 + M phase of the dinoflagellate cell cycle, in both metaphase and anaphase. The regulation of the spindle checkpoint involves the activation and inhibition of the anaphase promoting complex (APC), which in turn degrades specific cell cycle regulators in the metaphase to anaphase transition. In Crypthecodinium cohnii, nocodazole was also able to induce a prolongation of the degradation of mitotic cyclins and a delay in the inactivation of p13(suc1)-associated histone kinase activities. In addition, cell extracts prepared from C. cohnii in G1 phase and G2/M phase (or nocodazole treated) were able to activate and inhibit, respectively, the degradation of exogenous human cyclin B1 in vitro. The present study thus demonstrated the presence of the spindle checkpoint and APC-mediated cyclin degradation in dinoflagellates. This is discussed in relation to a possible role of the nuclear membrane in mitosis in dinoflagellates.  相似文献   

17.
Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The "destruction box" (D-box) of cyclin A is 10-20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.  相似文献   

18.
In higher eukaryotic cells, the spindle forms along with chromosome condensation in mitotic prophase. In metaphase, chromosomes are aligned on the spindle with sister kinetochores facing toward the opposite poles. In anaphase A, sister chromatids separate from each other without spindle extension, whereas spindle elongation takes place during anaphase B. We have critically examined whether such mitotic stages also occur in a lower eukaryote, Schizosaccharomyces pombe. Using the green fluorescent protein tagging technique, early mitotic to late anaphase events were observed in living fission yeast cells. S. pombe has three phases in spindle dynamics, spindle formation (phase 1), constant spindle length (phase 2), and spindle extension (phase 3). Sister centromere separation (anaphase A) rapidly occurred at the end of phase 2. The centromere showed dynamic movements throughout phase 2 as it moved back and forth and was transiently split in two before its separation, suggesting that the centromere was positioned in a bioriented manner toward the poles at metaphase. Microtubule-associating Dis1 was required for the occurrence of constant spindle length and centromere movement in phase 2. Normal transition from phase 2 to 3 needed DNA topoisomerase II and Cut1 but not Cut14. The duration of each phase was highly dependent on temperature.  相似文献   

19.
Mouse oocytes at different stages of maturation were fused together and the ensuing cell cycle events were analyzed with the objective of identifying checkpoints in meiosis. Fusion of maturing oocytes just undergoing germinal vesicle breakdown (GVBD) induces PCC (premature chromosome condensation) but no spindle formation in immature (GV) partner oocytes. On the other hand, fusion of metaphase I (MI) oocytes containing spindles to GV oocytes induces both PCC and spindle formation in the immature partner. Thus, while molecules required for condensation are present throughout metaphase, those involved in spindle formation are absent in early M-phase. Oocytes cultured for 6 h—early metaphase I (i.e., 2 h before the onset of anaphase I)—and then fused to anaphase-telophase I (A-TI) fusion partners block meiotic progression in the more advanced oocytes and induce chromatin dispersal on the spindle. By contrast, oocytes cultured for 8 h (late MI) before fusion to A-TI partners are driven into anaphase by signals from the more advanced oocytes and thereafter advance in synchrony to telophase I. When early (10 h) or late (12 h) metaphase II oocytes were fused to A-TI partners the signals generated from early MII oocytes block the anaphase to telophase I transition and induce a dispersal of A-TI chromosomes along the spindle. On the other hand, late MII oocytes respond to A-TI signals by exiting from the MII block and undergoing the A-TII transition. Moreover, the oocytes in late MI are not arrested in this stage and progress without any delay through A-TI to MII when fused to metaphase II partners. The signals from the less-developed partner force the MII oocyte through A-TII to MIII. In total, these studies demonstrate that the metaphase period is divided into at least three distinct phases and that a checkpoint in late metaphase controls the progress of meiosis in mammalian oocytes.  相似文献   

20.
High pressure (100-150 MPa) increases the intensity and polarization of fluorescence of FITC-labeled Ca(2+)-ATPase in a medium containing 0.1 mM Ca2+, suggesting a reversible pressure-induced transition from the E1 into an E2-like state with dissociation of ATPase oligomers. Under similar conditions but using unlabeled sarcoplasmic reticulum vesicles, high pressure caused the reversible release of Ca2+ from the high-affinity Ca2+ sites of Ca(2+)-ATPase, as indicated by changes in the fluorescence of the Ca2+ indicator, Fluo-3; this was accompanied by reversible inhibition of the Ca(2+)-stimulated ATPase activity measured in a coupled enzyme system of pyruvate kinase and lactate dehydrogenase, and by redistribution of Prodan in the lipid phase of the membrane, as shown by marked changes in its fluorescence emission characteristics. In a Ca(2+)-free medium where the equilibrium favors the E2 conformation of Ca(2+)-ATPase the fluorescence intensity of FITC-ATPase was not affected or only slightly reduced by high pressure. The enhancement of TNP-AMP fluorescence by 100 mM inorganic phosphate in the presence of EGTA and 20% dimethylsulfoxide was essentially unaffected by 150 MPa pressure at pH 6.0 and was only slightly reduced at pH 8.0. As the enhancement of TNP-AMP fluorescence by Pi is associated with the Mg(2+)-dependent phosphorylation of the enzyme and the formation of Mg.E2-P intermediate, it appears that the reactions of Ca(2+)-ATPase associated with the E2 state are relatively insensitive to high pressure. These observations suggest that high pressure stabilizes the enzyme in an E2-like state characterized by low reactivity with ATP and Ca2+ and high reactivity with Pi. The transition from the E1 to the E2-like state involves a decrease in the effective volume of Ca(2+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号