首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Shogren R 《Biomacromolecules》2007,8(11):3641-3645
The effect of orientation on the properties of amylose and starch films was studied in order to determine if film strength, flexibility, and water resistance could be improved. Potato amylose and high (70%) amylose corn starch were peracetylated, cast into films, stretched in hot glycerol 1-6 times the original length, and deacetylated. Molecular orientation of potato amylose films was much higher than for high-amylose corn starch films as determined by optical birefringence. For potato amylose films, orientation resulted in large increases in tensile strength and elongation but little change in modulus. For high-amylose corn starch films, tensile strength and modulus did not change with draw ratio but elongation to break increased from about 8% to 27% as draw ratio increased from 1 to 5. Scanning electron micrographs revealed many small crazes in the drawn starch films, suggesting that the improved film toughness was due to energy dissipation during deformation of the crazes. Annealing of drawn films at 100% humidity resulted in partial crystallization and improved wet strength.  相似文献   

3.
The polarized fluorescence of intrinsic tryptophan residues and the birefringence of ghost muscle fibres of rabbit were measured during thin filaments binding to heavy meromyosin containing 5,5'-dithiobis [2-nitrobenzoic acid] light chains and to those devoid of them with a view of investigating conformational changes in F-actin. Ca2+ binding to heavy meromyosin containing 5,5'-dithiobis [2-nitrobenzoic acid] light chains was shown to affect the character of these changes during the formation of the F-actin - heavy meromyosin complex.  相似文献   

4.
The intrinsic birefringences of TMV, tropocollagen, and paramyosin were calculated from flow birefringence measurements using the theory of Peterlin and Stuart. The values are -0.029, -0.029, and -0.030, respectively. The intrinsic birefringences of TMV and tropocollagen were measured as a function of the refractive index of the solvent in glycerol-water mixtures. In both cases the values were not constant and became less negative as the refractive index increased. Theoretical calculations showed that the large solvent effect could not be caused by a hydration shell of index different from that of the bulk solvent. It is concluded that either (a) the intrinsic birefringence calculated from the Peterlin-Stuart theory is incorrect or (b) the intrinsic birefringence depends markedly on the solvent. These results are of importance to the problem of quantitative polarized light microscopy since the separation of form and intrinsic birefringence contributions is based on the assumption that intrinsic birefringence is independent of solvent.  相似文献   

5.
The properties of plasticized chitosan-olive oil emulsion films prepared with increasing oil concentrations were investigated. Emulsifying nature of chitosan was enough to stabilize olive oil droplets in the film forming emulsions; hence homogeneous, thin and translucent films were obtained in all cases. The homogeneity of the lipid globules distribution in the films was confirmed by contact angle measurements and optical microscopy. All the tensile properties (Young Modulus, strength and maximum elongation) increased with olive oil concentration and were explained considering the interactions developed between lipid and carbohydrate phases in addition to the lubricant characteristics of the oil. Moisture sorption, water vapor permeation through the films and effective diffusion coefficients decreased as oil concentration increases, as a result of the non-polar nature of the lipid. Total soluble matter measurements were used to confirm the development of strong associations between chitosan and olive oil.  相似文献   

6.
The birefringence of tropomyosin crystals was measured in the temperature range 5 degrees-35 degrees C. The experimental results are compared with a simple model calculation based on the theory developed by Wiener for the optical properties of colloidal systems. The difference between experimental and theoretical values is less than 15%, which denotes a good agreement given the simplicity of the model. A value of 0.011 was obtained for the intrinsic birefringence of the tropomyosin molecule. The temperature dependence of the crystal birefringence could be accounted for in part by a change of the unit cell parameters; this change was experimentally observed by others in x-ray diffraction experiments.  相似文献   

7.
Meiosis I metaphase spindles were isolated from oocytes of the sea-star Pisaster ochraceus by a method that produced no detectable net loss in spindle birefringence. Some of the spindles were fixed immediately and embedded and sectioned for electron microscopy. Others were laminated between gelatine pellicles in a perfusion chamber, then fixed and sequentially and reversibly imbibed with a series of media of increasing refractive indices. Electron microscopy showed little else besides microtubules in the isolates, and no other component present could account for the observed form birefringence. An Ambronn plot of the birefringent retardation measured during imbibition was a good least squares fit to a computer generated theoretical curve based on the Bragg-Pippard rederivation of the Wiener curve for form birefringence. The data were best fit by the curve for rodlet index (n1) = 1.512, rodlet volume fraction (f) = 0.0206, and coefficient of intrinsic birefringence = 4.7 X 10(-5). The value obtained for n1 is unequivocal and is virtually as good as the refractometer determinations of imbibing medium index on which it is based. The optically interactive volume of the microtubule subunit, calculated from our electron microscope determination of spindle microtubule distribution (106/mum2), 13 protofilaments per microtubules, an 8 nm repeat distance and our best value for f, is compatible with known subunit dimensions as determined by other means. We also report curves fitted to the results of Ambronn imbibition of Bouin's-fixed Lytechinus spindles and to the Noll and Weber muscle imbibition data.  相似文献   

8.
The intrinsic birefringence of macromolecules can be obtained directly from flow birefringence measurements in a solvent whose refractive index matches that of the solute. A small and positive value (approximately 0.01) was found for the helical polypeptide, poly-γ-benzyl-L-glutamate. The birefringence in solvents of varying index calculated from the Peterlin-Stuart theory using this value of the intrinsic birefringence did not agree with experimental values. Considerations of polydispersity and shear deformation indicated that the discrepancy could not be attributed to these effects. Also it could not be explained in terms of specific solvent effects. It is concluded that optical properties cannot be derived from the continuum model employed by Peterlin and Stuart. Much better agreement was obtained with a helical dipole necklace model.  相似文献   

9.
Alginate, or alginic acid, is an unbranched binary copolymer of (1-->4)-linked beta-D-mannuronic acid and alpha-L-guluronic acid. Alginate readily forms binding interactions with a variety of divalent metal ions, such as calcium. This binding has been used to cross-link bulk alginates for a wide variety of applications, particularly in areas of tissue engineering, medical devices, and wound-healing dressings. A new method is identified here for producing Ca2+-cross-linked thin films of sodium alginate, using an aerosolized spray of CaCl2 solution. These thin films exhibit structural color that varies with film thickness. It is demonstrated that this structural color is highly reproducible and can also be tuned to produce a wide range of colored films. The noted ability of alginates to bind metal ions is used in combination with the structural coloration afforded by the thin film structure as a basis for color-based optical sensing of metal ions in aqueous solutions. Changes in film thickness, refractive index, and reflectivity in response to metal ions have been measured and reported. For certain ions such as Cr(III) and Cr(VI), changes in film thickness are the predominate factors in shifting the reflected film color. In the case of other ions such as Pb(II), a change in film refractive index plays a significant role in the reflectance properties of films.  相似文献   

10.
A study was made of spontaneous surface birefringence observed in pullulan films when a tilted polarized beam is passed through a plain polymer film. Birefringence was explored as a function of the angle of beam incidence and the film thickness. The orientational order parameter was estimated for pullulan chains located in the near-surface layers of films. The results were compared with data from earlier studies of other polysaccharides.  相似文献   

11.
Dynamic mechanical and rheo-optical studies of collagen and gelatin   总被引:2,自引:0,他引:2  
J C Chien  E P Chang 《Biopolymers》1972,11(10):2015-2031
The frequency dependence of dynamic mechanical properties of rat tail tendon (RTT), enzyme-solubilized collagen membranes (ESC), AKM-23 dialysis membranes, and gelatin film have been measured at 110, 11, and 3.5 Hz from - 160 to 220°C. RTT and AKM-23 are devoid of a rubbery region; there are as many as six mechanical loss transitions. Gelatin and ESC membranes behave as rubbery materials above room temperature; only three tan δE peaks can be resolved for these materials. Strain birefringence was used to measure the crystalline and amorphous contribution of orientation induced by strain. Both the birefringence and the strain optical coefficient are sensitive to the amount of water in a sample. The effect of chemical swelling agents and of annealing on birefringence are described. Stress relaxation data on gelatin film were analyzed with the rubber elasticity theory to give the average number of chains per unit volume, the specific polarizability, the stress-birefringence ratio and the average molecular weight between hydrogen bonds were calculated. The intrinsic amorphous birefringence for “wet” gelatin film is 1.25 × 10?2; it is estimated to be about 6 × 10?2 for “dry” gelatin film.  相似文献   

12.
INTRINSIC BIREFRINGENCE OF GLYCERINATED MYOFIBRILS   总被引:5,自引:2,他引:3       下载免费PDF全文
Patterns of intrinsic birefringence were revealed in formalin-fixed, glycerinated myofibrils from rabbit striated muscle, by perfusing them with solvents of refractive index near to that of protein, about 1.570. The patterns differ substantially from those obtained in physiological salt solutions, due to the elimination of edge- and form birefringence. Analysis of myofibrils at various stages of shortening has produced results fully consistent with the sliding filament theory of contraction. On a weight basis, the intrinsic birefringence of thick-filament protein is about 2.4 times that of thin-filament protein. Nonadditivity of thick- and thin-filament birefringence in the overlap regions of A bands may indicate an alteration of macromolecular structure due to interaction between the two types of filaments.  相似文献   

13.
We discuss the experimental data of surface plasmon resonance (SPR) occurring at the interface between air and single and bimetallic thin layers of Au and Ag prepared on glass substrates. The bilayer configuration allowed for the measurements of the optical constants of metallic films that are ultra thin; e.g., below 10 nm of thickness since SPR modes on such thin films in a single-layer configuration are shallow. We also discuss the effect of film thickness on SPR coupling. Thickness and refractive index of the films were determined by matching experimental SPR curves to the theoretical ones. Thickness and roughness of the films were also measured by atomic force microscopy. The results obtained by experimental measurements are in good agreement with AFM analysis.  相似文献   

14.
Measurements of stress relaxation in uniaxial extension and associated time-dependent birefringence have been made on bovine fibrin film, prepared by gentle compaction of coarse fibrin clots, containing 13–22% fibrin plasticized with either aqueous buffer or glycerol. Both unligated and ligated (i.e., with α-α and γ-γ ligation by fibrinoligase, factor XIIIa) films were studied. Both types showed two stages of stress relaxation, with time scales of approximately 10 and 103–104 s, respectively, with a plateau region between. In the plateau, the nominal (engineering) stress for ligated glycerol-plasticized film is proportional to In λ, where λ is the stretch ratio, up to λ ? 2, and it decreases with increasing temperature. For unligated glycerol-plasticized film, the stresses are smaller by a factor of one-half to one-third. For ligated film, the second stage of relaxation is relatively slight, and recovery after release of stress is often nearly complete. For unligated film, the second stage involves a substantial drop in stress, and after recovery there is a significant permanent set. A second relaxation for ligated film reproduces the first, but for unligated film it reproduces the first only if the initial relaxation is terminated before the second stage; otherwise, the second relaxation shows a weaker structure. The behavior of water-plasticized film is similar to that of glycerol-plasticized except that the second stage of relaxation occurs at shorter times. During the first stage of stress relaxation, up to about 100 s, the birefringence and the stress-optical coefficient increase; during the plateau zone of stress relaxation, the birefringence of ligated films is approximately constant and is proportional to 2λ2/(λ2 + 1) ? 1, where λ is the stretch ratio. This dependence is predicted by a two-dimensional model in which rodlike elements in the plane of the film are oriented with independent alignment. During the final stage of stress relaxation, the birefringence of ligated films decreases slightly; that of unligated films decreases substantially, but less rapidly than the stress, corresponding to a further increase in the stress-optical coefficient. With additional information from small-angle x-ray scattering reported in an accompanying paper, the first stage of relaxation is attributed to partial release of bending forces in the fibers by orientation, accompanied by increased birefringence. The second stage is attributed, for ligated films, to an internal transition in the fibrin units accompanied by elongation of some of the fibers; and in the unligated films, to a combination of the latter transition with slippage of protofibrils lengthwise within the fiber bundles that causes some loss of orientation, which diminishes the birefringence.  相似文献   

15.
The birefringence (deltan) of Rana pipiens rod outer segments (ROS) reveals microstructure inhomogeneities not seen with other techniques. In the basal 20-30-micron length of the ROS there is a nearly linear axial gradient in deltan of approximately equal to -2 x 10(-5)/micron. No consistent deltan gradients are found in the distal 20-30 micron of the ROS. Using glycerol imbibition to separate the intrinsic and form birefringence components, we found that the basal deltan gradient was principally due to a gradient of the intrinsic birefringence component. The disk membrane volume fraction decreases uniformly from the basal end to the distal end, while the disk membrane refractive index increases. The contributions of these changes to the form birefringence approximately cancel, so that the form component is fairly uniform along the ROS axis. Because its axial distance from the inner segment is a measure of the time since a disk membrane was formed, these gradients may reflect a disk membrane aging process. Occasionally a highly birefringent, 2-micron-wide band is seen at the basal end ot the ROS, possibly where the envelope membrane folds to form new disk membranes.  相似文献   

16.
The binding of phosphorylase kinase to thin filaments and their effects on the enzyme activity as well as the contribution of the enzyme to contractile protein phosphorylation have been studied. The data obtained suggest that the kinase binding to thin filaments is controlled by the regulatory proteins, troponin and tropomyosin. The bulk of the enzyme is bound to the F-actin-tropomyosin-troponin complex which activates the enzyme in a far greater degree than each of its constituent components. Ca2+ and ATP control the kinase binding to F-actin. ATP increases the enzyme binding 6-fold; Ca2+ decrease the S0.5 value for F-actin 5-fold. In acetone powder extracts phosphorylase kinase phosphorylates thin filament-bound phosphorylase b, troponin T and troponin I as well as 51-58 kDa and 114 kDa proteins. These results suggest that phosphorylase kinase plays a role in the mechanism of synchronization of glycogenolysis and muscle contraction rates.  相似文献   

17.
Asakura, Taniguchi and Oosawa [1]proposed that muscle actin polymer under sonic vibration is in a different state from that of the ordinary double stranded helical structure (F-actin), characterised by partially interrupted structures of F-actin, a state of "f-actin". In order to confirm different states for actin polymers [1, 2], physicochemical studies were made by measurements of viscosity, flow birefringence, electric birefringence, fluorescence, electron microscopy, quasielastic light scattering and ATP splitting. The following results were obtained. (1) F-actin polymers can undergo two processes of depolymerization upon treatment with urea and various salts as judged by measurements of flow birefringence and viscosity: one is a rapid process in a solution containing K+ or Ca2+ and urea; the other is a slow process following a brief rapid one in a solution containing Mg2+ and urea. (2) In the presence of Mg2+ and a suitable concentration of urea, F-actin (FMU-actin) appeared to exhibit different properties than ordinary F-actin; it had lower viscosity and lower flow birefringence and it had on the whole a more flexible polymer structure, also judging from experiments of quasielastic light scattering, electric birefringence. The different structure was confirmed directly be electron microscopic observation. The aromatic side chains of FMU-actin were also more mobile than those of F-actin judging from fluorescence measurements. The transformation between F-actin and FMU-actin was reversible. (3) The state of FMU-actin polymers was also characterized by ATP splitting; FMU-actin split about one mole of ATP into ADP and inorganic phosphate per mole of actin monomer at room temperature, where F-actin did not. A molar excess of Mg2+ with respect to actin monomer at room temperature, where F-actin did not. A molar excess of Mg2+ with respect to actin monomer is required for ATP splitting. F-actin in solutions containing K+ or Ca2+ and urea did not split ATP. FMU-actin activated on Mg-ATP-ase of myosin at nearly the same rate as that of F-actin. (4) We have postulated a flexible filament model (f-actin). The relationships between the structure of f-actin and its functional role for force generation during contraction are discussed.  相似文献   

18.
Mechanical stresses applied to the plasma membrane of an adherent cell induces strain hardening of the cytoskeleton, i.e. the elasticity of the cytoskeleton increases with its deformation. Strain hardening is thought to mediate the transduction of mechanical signals across the plasma membrane through the cytoskeleton. Here, we describe the strain dependence of a model system consisting of actin filaments (F-actin), a major component of the cytoskeleton, and the F-actin cross-linking protein alpha-actinin, which localizes along contractile stress fibers and at focal adhesions. We show that the amplitude and rate of shear deformations regulate the resilience of F-actin networks. At low temperatures, for which the lifetime of binding of alpha-actinin to F-actin is long, F-actin/alpha-actinin networks exhibit strong strain hardening at short time scales and soften at long time scales. For F-actin networks in the absence of alpha-actinin or for F-actin/alpha-actinin networks at high temperatures, strain hardening appears only at very short time scales. We propose a model of strain hardening for F-actin networks, based on both the intrinsic rigidity of F-actin and dynamic topological constraints formed by the cross-linkers located at filaments entanglements. This model offers an explanation for the origin of strain hardening observed when shear stresses are applied against the cellular membrane.  相似文献   

19.
The birefringence and linear dichroism of anisotropic thin films such as proteolipid membranes are related to molecular properties such as polarizability, shape, and orientation. Coupled plasmon-waveguide resonance (CPWR) spectroscopy is shown in the present work to provide a convenient means of evaluating these parameters in a single lipid bilayer. This is illustrated by using 1-10 mol % of an acyl chain chromophore-labeled phosphatidylcholine (PC) incorporated into a solid-supported PC bilayer deposited onto a hydrated silica surface. CPWR measurements were made of refractive index and extinction coefficient anisotropies with two exciting light wavelengths, one of which is absorbed by the chromophore and one of which is not. These results were used to calculate longitudinal and transverse molecular polarizabilities, the orientational order parameter and average angle between the longitudinal axis of the lipid molecule and the membrane normal, and the molecular shape factors of the lipid molecules. The values thereby obtained are in excellent agreement with parameters determined by other techniques, and provide a powerful tool for analyzing lipid-protein, protein-protein, and protein-ligand interactions in proteolipid films.  相似文献   

20.
Two stage extrusion of plasticized pectin/poly(vinyl alcohol) blends   总被引:1,自引:0,他引:1  
Blends of pectin with starch (high amylose and normal), poly(vinyl alcohol) (PVOH), and glycerol were extruded in a twin screw extruder, pelletized, and then further processed into blown film and extruded sheet using a single screw extruder. The samples were analyzed using tensile measurements, dynamic mechanical analysis, and scanning electron microscopy. PVOH levels of 24% or greater were necessary to successfully make blown film, while extruded sheet could be made at a level of 16% PVOH. Tensile strength and initial modulus of the extruded sheets were slightly higher in the machine direction than in the cross direction, while the reverse was true for elongation to break. For the blown films tensile strength tended to be higher in the transverse direction than in the machine direction, while the reverse was seen for initial modulus. Increased levels of PVOH led to increases in tensile strength and elongation to break, while initial modulus was decreased. Morphology as determined by SEM visually indicated stretching in the transverse direction of the blown films. The second stage extrusion appeared to promote -helix formation in the high amylose starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号