首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.  相似文献   

2.
3.
4.
Respiratory activity of plants in the light, measured as carbon dioxide release from the tricarboxylic acid (TCA) cycle or oxygen consumption by the respiratory chain, is generally reported to lie between 25 and 100% of that in the dark. While this has been interpreted as evidence for an inhibition of respiration during photosynthesis, an increasing body of evidence indicates that mitochondrial respiration plays an important role in photosynthetic tissues. Historically, the view from experiments using specific respiratory inhibitors has been that oxidative phosphorylation in the mitochondria provides the cytosol with adenosine triphosphate even in the light. However, functioning of TCA cycle reactions is also required for the export of carbon skeletons necessary for nitrate reduction in the cytosol. In addition, export of TCA cycle-derived reducing equivalents may also be necessary for photorespiration (for hydroxypyruvate reduction in the peroxisomes). The work with respiratory inhibitors has recently been complemented by a range of transgenic experiments that provide direct evidence for the importance of the TCA cycle in the illuminated leaves. These transgenesis experiments hint at an important role for ascorbate in coordinating the major pathways of energy metabolism within the leaf and are in keeping with current thinking that redox signals emanating from the mitochondria are important in setting the cellular machinery to maintain overall redox balance. In this review we intend to synthesize recent experimental data to postulate a model of the function of the TCA cycle in the illuminated leaf.  相似文献   

5.
The majority of all proteins of a living cell is active in complexes rather than in an isolated way. These protein-protein interactions are of high relevance for many biological functions. In addition to many well established protein complexes an increasing number of protein-protein interactions, which form rather transient complexes has recently been discovered. The formation of such complexes seems to be a common feature especially for metabolic pathways. In the Gram-positive model organism Bacillus subtilis, we identified a protein complex of three citric acid cycle enzymes. This complex consists of the citrate synthase, the isocitrate dehydrogenase, and the malate dehydrogenase. Moreover, fumarase and aconitase interact with malate dehydrogenase and with each other. These five enzymes catalyze sequential reaction of the TCA cycle. Thus, this interaction might be important for a direct transfer of intermediates of the TCA cycle and thus for elevated metabolic fluxes via substrate channeling. In addition, we discovered a link between the TCA cycle and gluconeogenesis through a flexible interaction of two proteins: the association between the malate dehydrogenase and phosphoenolpyruvate carboxykinase is directly controlled by the metabolic flux. The phosphoenolpyruvate carboxykinase links the TCA cycle with gluconeogenesis and is essential for B. subtilis growing on gluconeogenic carbon sources. Only under gluconeogenic growth conditions an interaction of these two proteins is detectable and disappears under glycolytic growth conditions.  相似文献   

6.
To understand the many roles of the Krebs tricarboxylic acid (TCA) cycle in cell function, we used DNA microarrays to examine gene expression in response to TCA cycle dysfunction. mRNA was analyzed from yeast strains harboring defects in each of 15 genes that encode subunits of the eight TCA cycle enzymes. The expression of >400 genes changed at least threefold in response to TCA cycle dysfunction. Many genes displayed a common response to TCA cycle dysfunction indicative of a shift away from oxidative metabolism. Another set of genes displayed a pairwise, alternating pattern of expression in response to contiguous TCA cycle enzyme defects: expression was elevated in aconitase and isocitrate dehydrogenase mutants, diminished in alpha-ketoglutarate dehydrogenase and succinyl-CoA ligase mutants, elevated again in succinate dehydrogenase and fumarase mutants, and diminished again in malate dehydrogenase and citrate synthase mutants. This pattern correlated with previously defined TCA cycle growth-enhancing mutations and suggested a novel metabolic signaling pathway monitoring TCA cycle function. Expression of hypoxic/anaerobic genes was elevated in alpha-ketoglutarate dehydrogenase mutants, whereas expression of oxidative genes was diminished, consistent with a heme signaling defect caused by inadequate levels of the heme precursor, succinyl-CoA. These studies have revealed extensive responses to changes in TCA cycle function and have uncovered new and unexpected metabolic networks that are wired into the TCA cycle.  相似文献   

7.
Since the discovery of hydrothermal vents more than 25 years ago, the Calvin-Bassham-Benson (Calvin) cycle has been considered the principal carbon fixation pathway in this microbe-based ecosystem. However, on the basis of recent molecular data of cultured free-living and noncultured episymbiotic members of the epsilon subdivision of Proteobacteria and earlier carbon isotope data of primary consumers, an alternative autotrophic pathway may predominate. Here, genetic and culture-based approaches demonstrated the abundance of reverse tricarboxylic acid cycle genes compared to the abundance of Calvin cycle genes in microbial communities from two geographically distinct deep-sea hydrothermal vents. PCR with degenerate primers for three key genes in the reverse tricarboxylic acid cycle and form I and form II of ribulose 1,5-bisphosphate carboxylase/oxygenase (Calvin cycle marker gene) were utilized to demonstrate the abundance of the reverse tricarboxylic acid cycle genes in diverse vent samples. These genes were also expressed in at least one chimney sample. Diversity, similarity matrix, and phylogenetic analyses of cloned samples and amplified gene products from autotrophic enrichment cultures suggest that the majority of autotrophs that utilize the reverse tricarboxylic acid cycle are members of the epsilon subdivision of Proteobacteria. These results parallel the results of previously published molecular surveys of 16S rRNA genes, demonstrating the dominance of members of the epsilon subdivision of Proteobacteria in free-living hydrothermal vent communities. Members of the epsilon subdivision of Proteobacteria are also ubiquitous in many other microaerophilic to anaerobic sulfidic environments, such as the deep subsurface. Therefore, the reverse tricarboxylic acid cycle may be a major autotrophic pathway in these environments and significantly contribute to global autotrophic processes.  相似文献   

8.
9.
Leishmania parasites proliferate within nutritionally complex niches in their sandfly vector and mammalian hosts. However, the extent to which these parasites utilize different carbon sources remains poorly defined. In this study, we have followed the incorporation of various (13)C-labeled carbon sources into the intracellular and secreted metabolites of Leishmania mexicana promastigotes using gas chromatography-mass spectrometry and (13)C NMR. [U-(13)C]Glucose was rapidly incorporated into intermediates in glycolysis, the pentose phosphate pathway, and the cytoplasmic carbohydrate reserve material, mannogen. Enzymes involved in the upper glycolytic pathway are sequestered within glycosomes, and the ATP and NAD(+) consumed by these reactions were primarily regenerated by the fermentation of phosphoenolpyruvate to succinate (glycosomal succinate fermentation). The initiating enzyme in this pathway, phosphoenolpyruvate carboxykinase, was exclusively localized to the glycosome. Although some of the glycosomal succinate was secreted, most of the C4 dicarboxylic acids generated during succinate fermentation were further catabolized in the TCA cycle. A high rate of TCA cycle anaplerosis was further suggested by measurement of [U-(13)C]aspartate and [U-(13)C]alanine uptake and catabolism. TCA cycle anaplerosis is apparently needed to sustain glutamate production under standard culture conditions. Specifically, inhibition of mitochondrial aconitase with sodium fluoroacetate resulted in the rapid depletion of intracellular glutamate pools and growth arrest. Addition of high concentrations of exogenous glutamate alleviated this growth arrest. These findings suggest that glycosomal and mitochondrial metabolism in Leishmania promastigotes is tightly coupled and that, in contrast to the situation in some other trypanosomatid parasites, the TCA cycle has crucial anabolic functions.  相似文献   

10.
11.
12.
13.
14.
The tricarboxylic acid (TCA) cycle, otherwise known as the Krebs cycle, is a central metabolic pathway that performs the essential function of oxidizing nutrients to support cellular bioenergetics. More recently, it has become evident that TCA cycle behavior is dynamic, and products of the TCA cycle can be co-opted in cancer and other pathologic states. In this review, we revisit the TCA cycle, including its potential origins and the history of its discovery. We provide a detailed accounting of the requirements for sustained TCA cycle function and the critical regulatory nodes that can stimulate or constrain TCA cycle activity. We also discuss recent advances in our understanding of the flexibility of TCA cycle wiring and the increasingly appreciated heterogeneity in TCA cycle activity exhibited by mammalian cells. Deeper insight into how the TCA cycle can be differentially regulated and, consequently, configured in different contexts will shed light on how this pathway is primed to meet the requirements of distinct mammalian cell states.  相似文献   

15.
The specific activities of the enzymes of the tricarboxylic acid cycle; citrate synthase, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were determined in early fifth-stage, young and mature adult Obeliscoides cuniculi, the rabbit stomach worm. ∝-Ketoglutarate dehydrogenase activity could not be determined in any fraction. Fumarate reductase activity was found only in the mitochondrial fraction while all other enzymes, including an NADP-dependent malic enzyme were localized in the cytoplasm. Glutamate dehydrogenase, acid and alkaline phosphatase activities were also recorded. High levels of those enzymes acting in the “reversed” direction, i.e. MDH and fumarase relative to the enzymes of the “forward” direction, i.e. citrate synthase, aconitase and isocitrate dehydrogenase suggests that under anaerobic conditions a modified tricarboxylic acid cycle can operate. Some variations in specific activities were apparent as the worms matured but no qualitative differences were observed.  相似文献   

16.
17.
Cellular and mitochondrial metabolite levels were measured in yeast TCA cycle mutants (sdh2Δ or fum1Δ) lacking succinate dehydrogenase or fumarase activities. Cellular levels of succinate relative to parental strain levels were found to be elevated ~8-fold in the sdh2Δ mutant and ~4-fold in the fum1Δ mutant, and there was a preferential increase in mitochondrial levels in these mutant strains. The sdh2Δ and fum1Δ strains also exhibited 3-4-fold increases in expression of Cit2, the cytosolic form of citrate synthase that functions in the glyoxylate pathway. Co-disruption of the SFC1 gene encoding the mitochondrial succinate/fumarate transporter resulted in higher relative mitochondrial levels of succinate and in substantial reductions of Cit2 expression in sdh2Δsfc1Δ and fum1Δsfc1Δ strains as compared with sdh2Δ and fum1Δ strains, suggesting that aberrant transport of succinate out of mitochondria mediated by Sfc1 is related to the increased expression of Cit2 in sdh2Δ and fum1Δ strains. A defect (rtg1Δ) in the yeast retrograde response pathway, which controls expression of several mitochondrial proteins and Cit2, eliminated expression of Cit2 and reduced expression of NAD-specific isocitrate dehydrogenase (Idh) and aconitase (Aco1) in parental, sdh2Δ, and fum1Δ strains. Concomitantly, co-disruption of the RTG1 gene reduced the cellular levels of succinate in the sdh2Δ and fum1Δ strains, of fumarate in the fum1Δ strain, and citrate in an idhΔ strain. Thus, the retrograde response is necessary for maintenance of normal flux through the TCA and glyoxylate cycles in the parental strain and for metabolite accumulation in TCA cycle mutants.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号