首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipocytes process insulin through either of two pathways: a retroendocytotic pathway that culminates in the release of intact insulin, and a degradative pathway that terminates in the intracellular catabolism and release of degraded ligand. Mechanistically, these pathways were found to differ in several ways. First, temporal differences were found in the rate at which intact and degraded products were extruded. After 125I-insulin was preloaded into the cell interior, intact ligand was completely released during the first 10 min (t 1/2 = 2 min), whereas degraded insulin was released at a much slower rate over 1 h (t 1/2 greater than 8 min). Secondly, it was found that chloroquine profoundly inhibited the insulin degradative pathway, resulting in the intracellular accumulation of intact ligand and a reduction in the release of degraded products. In contrast, however, chloroquine was without effect on the retroendocytotic processing of insulin. Based on the known actions of chloroquine, it appears that retroendocytosis of insulin does not involve vesicular acidification or dissociation of the insulin-receptor complex and that insulin is most likely carried to the cell exterior in the same vesicles (either receptor-bound or free) as those mediating recycling receptors. Interestingly, accumulation of undergraded insulin within chloroquine-treated cells did not result in the release of additional intact ligand, suggesting that once insulin enters the degradative compartment it is committed to catabolism and cannot exit the cell through the retroendocytotic pathway. A third difference was revealed by the finding that extracellular unlabeled insulin (100 ng/ml) markedly accelerated the rate at which preloaded 125I-insulin was released from adipocytes (t 1/2 of 3 min versus 7 min in controls cells). Analysis of the composition of the released products revealed that extracellular insulin rapidly augmented (over 10 min) in a dose-dependent manner (5-200 ng/ml) the amount of insulin released intact (from 25 to 38% of preloaded counts; insulin ED50 = 10 ng/ml). Although extracellular insulin had no effect on the early extrusion of degraded insulin, the release of catabolized products was reduced at later times. The interpretation of these results is that the rate or amount of incoming insulin-receptor complexes can effect a sorting process (prior to bifurcation) such that a proportion of insulin is shunted from the slower degradative pathway to the more rapid retroendocytotic pathway.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Adipocytes route internalized insulin through two major pathways, a degradative pathway and a retroendocytotic pathway. To examine whether sorting of incoming insulin-receptor complexes can be altered, we assessed the effect of vanadate on the intracellular processing of both insulin and insulin receptors. After cells were pretreated with vanadate (1 mM for 30 min at 37 degrees C), 125I-insulin was loaded into the cell interior. When the net efflux of insulin from cells into the medium was then monitored, vanadate was found to slow the efflux of insulin from a t1/2 of 6.2 min (controls) to 11 min. Since efflux reflects both the rapid extrusion of intact insulin and the slower release of degradative products, we proposed that vanadate diverts more insulin into the degradative pathway. Further evidence in support of this idea included the following: 1) when intracellular degradation of insulin was impaired by chloroquine, undegraded insulin accumulated faster within vanadate-treated cells, consistent with greater flux through a degradative pathway; 2) vanadate increased the percentage of degraded insulin released from cells from 61 and 72%; and 3) under steady-state binding conditions, more insulin resided in the cell interior of vanadate-treated cells (44.8% versus 34.5%), and the time required for the intracellular pool to reach equilibrium was prolonged (t1/2 of 5.5 min versus 4.0). Neither insulin internalization nor degradation was impaired by vanadate alone. In related studies Tris was found to inhibit insulin-mediated receptor recycling by only 10%, whereas in the presence of vanadate (plus Tris) almost all incoming insulin receptors were prevented from recycling. Vanadate alone had no effect on the ability of insulin receptors to recycle. Based on these results we conclude that: 1) vanadate shunts incoming insulin from a more rapid retroendocytotic pathway to a slower degradative pathway and diverts insulin receptors from a Tris-insensitive recycling pathway to one that can be completely inhibited by Tris; 2) these effects are selective, in that vanadate impairs neither insulin degradation nor receptor uptake and recycling. Considered together, these findings support the idea that a sorting mechanism exists for the intracellular routing of incoming insulin-receptor complexes.  相似文献   

3.
Selective degradation of insulin within rat liver endosomes   总被引:4,自引:2,他引:2       下载免费PDF全文
To characterize the role of the endosome in the degradation of insulin in liver, we employed a cell-free system in which the degradation of internalized 125I-insulin within isolated intact endosomes was evaluated. Incubation of endosomes containing internalized 125I-insulin in the cell-free system resulted in a rapid generation of TCA soluble radiolabeled products (t1/2, 6 min). Sephadex G-50 chromatography of radioactivity extracted from endosomes during the incubation showed a time dependent increase in material eluting as radioiodotyrosine. The apparent Vmax of the insulin degrading activity was 4 ng insulin degraded.min-1.mg cell fraction protein-1 and the apparent Km was 60 ng insulin.mg cell fraction protein-1. The endosomal protease(s) was insulin-specific since neither internalized 125I-epidermal growth factor (EGF) nor 125I-prolactin was degraded within isolated endosomes as assessed by TCA precipitation and Sephadex G-50 chromatography. Significant inhibition of degradation was observed after inclusion of p-chloromercuribenzoic acid (PCMB), 1,10-phenanthroline, bacitracin, or 0.1% Triton X-100 into the system. Maximal insulin degradation required the addition of ATP to the cell-free system that resulted in acidification as measured by acridine orange accumulation. Endosomal insulin degradation was inhibited markedly in the presence of pH dissipating agents such as nigericin, monensin, and chloroquine or the proton translocase inhibitors N-ethylmaleimide (NEM) and dicyclohexylcarbodiimide (DCCD). Polyethylene glycol (PEG) precipitation of insulin-receptor complexes revealed that endosomal degradation augmented the dissociation of insulin from its receptor and that dissociated insulin was serving as substrate to the endosomal protease(s). The results suggest that as insulin is internalized it rapidly but incompletely dissociates from its receptor. Dissociated insulin is then degraded by an insulin specific protease(s) leading to further dissociation and degradation.  相似文献   

4.
The present study demonstrated that at physiological concentrations of insulin bacitracin inhibited the degradation of specifically bound insulin by enzymes located in the rat adipocyte plasma membrane. Bacitracin increased the amount of intact insulin specifically bound to the plasma membrane and potentiated the stimulation of adipocyte glucose oxidation by submaximal concentrations of the hormone. In contrast to agents such as chloroquine, which inhibit lysosomal degradation of internalized insulin, bacitracin was shown by two approaches to inhibit a degradative process localized to the adipocyte plasma membrane. Cyanide and 2,4-dinitrophenol, agents which inhibit energy requiring endocytosis, had no effect on the bacitracin inhibition of cellular degradation of 125I-insulin. Bacitracin directly inhibited 125I-insulin degradation by isolated plasma membranes at similar concentrations and to a similar extent as found with cells. The degradative process inhibited by bacitracin accounted for the majority of cellular degradation of the hormone. The increased 125I-insulin bound to adipocytes was shown to be intact by gel chromatographic analysis and was localized to the plasma membrane by direct and indirect approaches. Bacitracin increased 125I-insulin specifically bound to isolated plasma membranes as early as 2 min. The 125I-insulin bound to adipocytes in the presence of bacitracin was completely dissociable by the addition of 8 microM unlabeled insulin whereas a significant portion of 125I-insulin bound to chloroquine-treated cells could not be dissociated. Bacitracin slowed dissociation of 125I-insulin from the cells. Bacitracin increased the 125I-insulin binding to cells in the presence and absence of cyanide and 2,4-dinitrophenol. Bacitracin potentiated the stimulation of adipocyte glucose oxidation at submaximal concentrations of insulin.  相似文献   

5.
Internalization and degradation of insulin by human erythrocytes were studied. Erythrocytes were incubated with 125I-insulin at 4 degrees C, 15 degrees C, and 37 degrees C for varying time intervals. These erythrocytes were then subjected to a low pH wash to release bound insulin followed by TCA precipitation. After 4, 22, and 24 hours of insulin binding at 4 degrees C, 92 to 95% of the bound 125I-insulin was dissociable and 92 to 98% of the extractable insulin was undegraded. After 3.5 hours of incubation at 15 degrees, 82% of the bound insulin was dissociable and 60% of this was intact. However, after 60, 90, 120, and 180 minutes of incubation at 37 degrees C, only 42, 34, 24, and 37%, respectively, of the bound insulin was dissociable. The undissociated insulin in the 37 degrees C studies was considered to be intracellular. With increasing time of incubation at 37 degrees C, the extractability of cell bound insulin and the proportion of undegraded dissociable insulin were decreased. When 125I-insulin binding was 95% blocked by preincubating the erythrocytes with anti-insulin receptor antibody, 95% of the degradation of 125I-insulin was also blocked. These studies indicate that mature human erythrocytes degrade internalized insulin and this process is time, temperature, and insulin receptor dependent.  相似文献   

6.
When hepatocytes were freshly isolated from rat liver and incubated for various periods of time at 37 degrees C, the media from the incubation, when completely separated from the cells, actively degraded 125I-insulin. THis soluble protease activity was strongly inhibited by bacitracin but was unaffected by the lysosomatropic agent ammonium chloride (NH4Cl). When hepatocytes were incubated with 125I-insulin at 37 degrees C in the presence or absence of 8 mM NH4Cl the ligand initially bound to the plasma membrane and was subsequently internalized as a function of time. When hepatocytes were incubated at 37 degrees C for 30 minutes with 125I-insulin in the presence of bacitracin and NH4Cl or bacitracin alone and the cells were washed, diluted, and the cell-bound radioactivity allowed to dissociate, the percent intact 125I-insulin in the cell pellet and in the incubation media was greater in the presence of NH4Cl at each time point of incubation. Under these same conditions a higher proportion of the cell-associated radioactivity was internalized and a higher proportion was associated with lysosomes. The data suggest that receptor-mediated internalization is required for insulin degradation by the cell, and that this process, at least in part, involves lysosomal enzymes. Furthermore, the data demonstrate that internalization is not blocked by the presence of bacitracin or NH4Cl in the incubation media, but that degradation is inhibited.  相似文献   

7.
A key step in the sorting of endocytosed ligands from their receptors is dissociation, which is triggered by the acidic pH of endosomes. To determine whether dissociation occurs synchronously for all ligands, we compared in Chinese hamster ovary cells the intracellular dissociation of insulin, which dissociates between pH 6.3 and 7.0, with that of lysosomal hydrolases bearing the mannose 6-phosphate recognition marker (Man-6-P proteins), which dissociate around pH 5.8. Chinese hamster ovary cells were pulsed for 2 min with 125I-insulin, acid-washed to remove surface binding, and chased. During a 40-min period, about 50% of the internalized 125I-insulin was released intact via a retrocytotic pathway. Retrocytosis was not inhibited by monensin, suggesting that the release was not dependent on acidic endosomes. The remaining insulin dissociated from its receptor in an acidification-sensitive manner and was eventually degraded. Dissociation was 70% complete within 5 min of internalization. When cells were similarly incubated with 125I-Man-6-P proteins, about 35% of the internalized radioactivity was released during a 1-h chase, reflecting proteolytic maturation of the Man-6-P proteins. Dissociation of Man-6-P proteins was acidification-dependent (i.e. inhibited by monensin), and was 50% complete after about 11 min. The results indicate that acidification-dependent dissociation of ligands does not occur in a single step and suggest that multiple endocytic compartments are involved in receptor/ligand sorting.  相似文献   

8.
Sephadex (G-50 fine grade)-gel chromatography and trichloroacetic acid (TCA) precipitation were used to investigate the effects of chloroquine and bacitracin on the nature of cell-associated radioactivity in studies on the binding and degradation of 125I-insulin in cultured rat hepatocytes. Sephadex peak I, eluted with the void volume, increased with hepatocyte incubation time and comprised 6% of total cell-bound radioactivity at 120 min. However, all radioactivity in this peak was due to unspecific binding. Peak II, corresponding to intact insulin, represented 95% of specifically cell-associated label at 5 min and decreased to 77% at 120 min. Peak III, containing the final low-Mr degradation products, increased with incubation time (22% of specifically bound label at 120 min). The TCA-precipitable and TCA-soluble fractions of hepatocytes extracted with 0.1% SDS were within 4-7% of the proportions of radioactivity in peaks II and III respectively. Scatchard plots based on insulin-binding data from Sephadex chromatography or TCA precipitation were identical. Dissociation studies revealed that at least 75% of the intact insulin associated with the hepatocytes was bound to receptors at the cell surface. Bacitracin increased the proportion of cell-associated intact hormone and decreased that of ligand degraded when analysed by either Sephadex chromatography or TCA precipitation. The proportion of surface-bound to internalized intact hormone remained unaltered, indicating that bacitracin acted predominantly at the cell surface. In the presence of chloroquine, which dramatically increased the contribution of peak I to specific binding, 'intact' insulin was substantially overestimated when determined as the TCA-precipitable fraction. In addition, all peak I material and 50% of cell-associated label in peak II was trapped intracellularly, thereby pointing to the lysosomal or prelysosomal site of action of this drug.  相似文献   

9.
Insulin binding to rat liver plasma membranes promotes proteolysis of the Mr 135,000 alpha subunit of the insulin receptor to a fragment of Mr 120,000 (Lipson, K. E., Yamada, K., Kolhatkar, A. A., and Donner, D. B. (1986) J. Biol. Chem. 261, 10833-10838). The enzyme that catalyzes this degradation copurifies with plasma membranes and cannot be identified in any other cellular organelle or in cytosol. The proteinase has optimal activity above pH 7 and is an integral protein based upon its resistance to extraction with 2 M NaCl. After affinity labeling, degraded insulin receptors were identified in plasma membranes isolated from a liver perfused with 1 nM 125I-insulin for 10 min at 37 degrees C, indicating that proteolysis occurs in the hepatocyte cell membrane under physiological conditions. Microsomes do not contain the receptor degrading activity or a detectable amount of degraded receptors under basal conditions. After perfusion of a liver with 125I-insulin, Mr 135,000 and Mr 120,000 complexes were detected in microsomes, suggesting that both intact and degraded receptors can be internalized. The initial absence of degraded receptors in plasma membranes suggests that, following internalization, such sites do not recycle. Thus, hormone-induced proteolysis of the insulin receptor begins at the surface of the rat hepatocyte and can lead to loss of receptors from the plasma membrane.  相似文献   

10.
We compared A-14 and A-19 125I-labelled insulin in receptor-binding and degradation. Percent receptor-binding of A-14 and A-19 125I-labelled insulin to 2.4 X 10(9)/ml erythrocytes after 210 min incubation at 15 degrees C was 7.8 and 4.9%, respectively. Percent insulin-receptor binding of A-14 insulin was 1.6 times greater than that of A-19 insulin. A similar result was obtained in an adipocytes insulin binding study. Percent receptor-binding of A-14 and A-19 insulin to 2 X 10(5)/ml fat cells after 30 min incubation in the above buffer was 3.9 and 2.4%, respectively. Degradation of A-14 and A-19 insulin in rat adipocytes was also studied by molecular sieve column chromatography. Isolated rat adipocytes were allowed to associate with A-14 and A-19 125I-insulin for 60 min at 37 degrees C, pH 8.0 in a HEPES-phosphate buffer, and then cells were separated from the buffer by centrifugation. After solubilization with triton X-100, both the solubilized cells and the incubation medium were applied to the Bio-Gel P-30 column to assess the insulin degradation. Degradation of A-14 125I-insulin by the isolated rat adipocytes was 1.6 times greater than that of A-19 125I-insulin. Furthermore, the peak which was thought to be intermediate degradation products of insulin was obtained between the peak of intact insulin and that of 125I-tyrosine. Such a peak of intermediates was much smaller in the incubation media than in the cell-associated materials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Low temperature and the lysosomotropic agent, chloroquine, were used to study the degradation of 125I-insulin in a perfused rat liver. Insulin (1.5 × 10?9m) was removed from the perfusate at 35 °C with a T12 of 12 min, and this process was slowed to 35 min at a temperature of 17 °C. Essentially no degradation of 125I-insulin took place in the liver at 17 °C. After 90 min at that temperature 64% of the liver radioactivity had accumulated in the microsomal fraction of the tissue homogenate, while at 35 °C 60% of the radioactive material was in the supernatant fraction. Greater than 80% of the supernatant radioactivity was acid soluble. Rapid warming of a 17 °C-treated liver to 35 °C allowed the accumulated 125I-insulin in the microsomal fraction to be degraded to acid-soluble products in the normal manner. Chloroquine (0.2 mm) also caused the liver to degrade insulin more slowly. At 60 min after adding 125I-insulin to the chloroquine-treated liver, 50% of the radioactivity in the tissue was still present in the lysosome-rich fraction of the homogenate, while less than 10% was in this fraction in a control liver. The effects of low temperature show transfer of insulin to its degradative site is rate limiting for hormone catabolism and the inhibition by chloroquine suggests lysosomes have a role in insulin degradation by the liver.  相似文献   

12.
The fate of 125I-labeled transforming growth factor-beta (125I-TGF beta) after binding to its cells surface receptor has been investigated in BALB/c 3T3 mouse fibroblasts. Binding of 125I-TGF beta to cellular receptors at 4 degrees C is pH-sensitive, being markedly decreased at pH less than 6. Most (approximately 90%) of the 125I-TGF beta bound to cells at 4 degrees C can be removed by a brief treatment with acidic medium but is converted into an acid-resistant state rapidly after shifting the cells to 37 degrees C. Cell-bound 125I-TGF beta is degraded at 37 degrees C and the degradation products are released into the medium. The lysosomotropic bases chloroquine, methylamine, and ammonium and the carboxylic ionophore monensin inhibit the degradation and release of 125I-TGF beta from the cells. Cells allowed to accumulate 125I-TGF beta intracellularly by the action of chloroquine or monensin were treated with the bifunctional agent disuccinimidyl suberate in the presence of detergent Triton X-100; this treatment caused the cross-linking of internalized 125I-TGF beta with the 280-kilodalton TGF beta receptor component. Under conditions in which sustained binding and degradation of saturating 125I-TGF beta concentrations occurs, there is no marked decrease in the binding capacity of the cells even when protein synthesis is blocked with cycloheximide. These results indicate that after TGF beta binding the TGF beta:receptor complex becomes rapidly internalized and that TGF beta is directed towards lysosomes where it is degraded and released. However, the cell surface is replenished with TGF beta receptors recycled after internalization or supplied by a large intracellular pool.  相似文献   

13.
The influence of a mild heat shock on the fate of the insulin-receptor complex was studied in cultured fetal rat hepatocytes whose insulin glycogenic response is sensitive to heat [Zachayus and Plas (1995): J Cell Physiol 162:330–340]. After exposure from 15 min to 2 hr at 42.5°C, the amount of 125I-insulin associated with cells at 37°C was progressively decreased (by 35% after 1 hr), while the release of 125I-insulin degradation products into the medium was also inhibited (by 75%), more than expected from the decrease in insulin binding. Heat shock did not affect the insulin-induced internalization of cell surface insulin receptors but progressively suppressed the recycling at 37°C of receptors previously internalized at 42.5°C in the presence of insulin. When compared to the inhibitory effects of chloroquine on insulin degradation and insulin receptor recycling, which were immediate (within 15 min), those of heat shock developed within 1 hr of heating. The protein level of insulin receptors was not modified after heat shock and during recovery at 37°C, while that of Hsp72/73 exhibited a transitory accumulation inversely correlated with variations in insulin binding, as assayed by Western immunoblotting from whole cell extracts. Coimmunoprecipitation experiments revealed a heat shock-stimulated association of Hsp72/73 with the insulin receptor. Affinity labeling showed an interaction between 125I-insulin and Hsp72/73 in control cells, which was inhibited by heat shock. These results suggest that increased Hsp72/73 synthesis interfered with insulin degradation and prevented the recycling of the insulin receptor and its further thermal damage via a possible chaperone-like action in fetal hepatocytes submitted to heat stress. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The kinetics of receptor internalization and recycling was directly determined in adipocytes by measuring 125I-insulin binding to total, intracellular, and cell-surface insulin receptors. In the absence of insulin 90% of all receptors were on the cell-surface and 10% were intracellular. Insulin (100 ng/ml) rapidly altered this distribution by translocating surface receptors to the cell-interior through a temperature and energy dependent process. Surface-derived receptors were seen within cells as early as 30 s and accumulated intracellularly at the rate of approximately 20,000/min (t 1/2 = 2.7 min). After 6 min the size of the intracellular receptor pool plateaued (for up to 2 h), with 30% of surface receptors residing within the cell. This plateau was due to the attainment of an equilibrium between receptor uptake and recycling, since removal of insulin (to stop receptor uptake) was followed by both a rapid depletion of intracellular receptors and a a concomitant and stoichiometric reappearance of receptors on the cell-surface. Receptors were efficiently recycled, with little or no net loss observed even after 4 h of insulin treatment; however, recycling could be partially inhibited (approximately 10%) by several agents (e.g. chloroquine and Tris). Tris treatment of adipocytes in the presence of insulin led to 50% loss of surface and total receptors at 2 and 4 h, respectively. Since chloroquine prevented the decrease in total receptors, but not the loss of surface receptors, it appears that Tris impairs recycling by diverting a portion of incoming receptors to a chloroquine-inhibitable degradative site. From these results we conclude that: 1) insulin triggers endocytotic uptake of insulin-receptor complexes; 2) internalized receptors are then rapidly reinserted into the plasma membrane, and the receptors can traverse this recycling pathway within 6 min; 3) prolonged recycling does not normally result in measurable receptor loss, but when receptors are prevented from recycling, they become trapped intracellularly and are shunted to a chloroquine-sensitive degradative pathway; and 4) chloroquine and Tris are only partially effective inhibitors of receptor recycling.  相似文献   

15.
Human insulin receptor (HIR) is expressed in two isoforms which differ in the C-terminal end of the alpha-subunit (HIR-A = -12 aa, HIR-B = +12 aa). We studied internalization kinetics of HIR-A and HIR-B in Rat1 fibroblasts. Internalized receptors were quantified by 125I-insulin binding after cell trypsinisation and solubilization, surface receptors were determined by 125I-insulin binding to intact cells and by chemical crosslinking with B26-125I-insulin. HIR-A and HIR-B show different kinetics of receptor internalization. While in HIR-A cells the maximum of internalization (approx. 65% of total) is reached after 10 min followed by a high recycling rate (approx. 80% of internalized receptors after 20 min), the internalization in HIR-B cells reaches a maximum (approx. 60% of total) after 15 min without detectable recycling within 30 min. The data show that the different alpha-subunits of both receptor types determine different velocities of internalization and determine whether a fast recycling occurs.  相似文献   

16.
Fc receptor-mediated endocytosis of monomeric IgG1 by human mononuclear phagocytes was evaluated under conditions where aggregated IgG and insulin readily undergo receptor-mediated internalization. U937 cells or normal human peripheral blood monocytes were incubated at 37 degrees C in the absence of free radioligand after having first bound 125I-IgG1 at 0 degrees C. To determine the amount of cell-associated IgG1 internalized after varying periods of 37 degrees C incubation, surface-bound IgG1 was removed by sequential exposure of cells at 0 degrees C to a nonspecific proteinase for 1 h and to acetic acid at pH 3.2 for 3 min. The failure to develop a proteinase- and acid-resistant fraction, similar to that seen over time at 37 degrees C in parallel experiments with 125I-insulin and 125I-aggregated IgG, and the lack of degradation of the IgG1 released into the medium from the same cells over time show that these cells do not endocytose and degrade monomeric IgG by an Fc receptor-specific mechanism and suggest that constitutive recycling without degradation is unlikely to be occurring. These data fulfill one prediction of the hypothesis that receptor-receptor interaction triggers Fc receptor-mediated endocytosis.  相似文献   

17.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37 degrees C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37 degrees C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37 degrees C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37 degrees C, 80% of the cell-bound radioactivity was not extractable from GH3, cells with acetic acid.  相似文献   

18.
Phorbol 12-myristate 13-acetate (PMA) was used to examine the role of insulin receptor phosphorylation in the regulation of insulin receptor internalization in vascular endothelial cells. Association of 125I-insulin in rat capillary and bovine aortic endothelial cells preincubated with PMA was increased by 80 and 64% over control, respectively. The increase was due to enhanced 125I-insulin internalization as opposed to an effect on surface-bound hormone. PMA had no significant effect on 125I-insulin degradation or on release of internalized insulin from the cells. Internalization of 125I-labeled insulin receptor was determined by the resistance of labeled receptor to trypsinization. At 10 degrees C, nearly all of the labeled receptor was sensitive to removal by trypsin, indicating that it was exposed on the cell surface. Exposure of labeled cells to insulin (100 nM) at 37 degrees C resulted in the rapid appearance of trypsin-resistant insulin receptor, indicating receptor internalization. Steady state for receptor internalization was attained at 10-15 min. When surfaced-labeled cells were preincubated with PMA at 37 degrees C, the rate of insulin receptor internalization was increased by 3.6 +/- 0.2-fold and 2.1 +/- 0.5-fold at 1 and 5 min of insulin exposure, respectively (ED50 at 16 nM PMA). This effect of PMA was associated with an increase in serine phosphorylation of the insulin receptor. Thus, PMA increased insulin internalization in the endothelial cells by modulating the insulin-induced internalization of the receptor. The additive effects of PMA and insulin on insulin receptor phosphorylation suggest that the phorbol ester and insulin act via independent signaling mechanisms.  相似文献   

19.
In the present study, we have examined whether insulin degradation products are present on the surface of isolated rat hepatocytes and can be removed by an acid dissociation technique. Hepatocytes were incubated with [125I]insulin for 30 minutes, rapidly washed to remove unbound insulin, and then briefly exposed to acidic conditions (pH 5.0) to remove bound hormone from the cell surface. The radioactive material removed from the cell by acid dissociation and that remaining with the cells were separately analyzed by high performance liquid chromatography. The two primary degradation products of insulin present in control cell extracts were found only with the cell-associated material after acid dissociation. The insulin-sized radioactive material in the extract of acid-dissociable material consisted of only intact [125I]insulin. These results show that the two primary degradation products of insulin in rat hepatocytes are found only intracellularly and suggest that the degradation of the hormone begins after it is internalized.  相似文献   

20.
Uptake and destruction of 125I-CSF-1 by peritoneal exudate macrophages   总被引:3,自引:0,他引:3  
The binding and uptake of the colony-stimulating factor CSF-1 by peritoneal exudate macrophages (PEM) from lipopolysaccharide insensitive C3H/HeJ mice was examined at 2 degrees C, and at 37 degrees C. At 2 degrees C, 125I-CSF-1 was bound irreversibly to the cell surface. At 37 degrees C, 90% of the cell surface associated 125I-CSF-1 was rapidly internalized and subsequently degraded and the remaining 10% dissociated as intact 125I-CSF-1. Thus classical equilibrium or steady state methods could not be used to quantitatively analyze ligand-cell interactions at either temperature, and alternative approaches were developed. At 2 degrees C, the equilibrium constant (Kd less than or equal to 10(-13) M) was derived from estimates of the rate constants for the binding (kon congruent to 8 x 10(5) M-1 s-1) and dissociation (koff less than or equal to 2 x 10(-7) s-1) reactions. At 37 degrees C, the processes of dissociation and internalization of bound ligand were kinetically competitive, and the data was formally treated as a system of competing first order reactions, yielding first order rate constants for dissociation, koff = 0.7 min-1 (t1/2 = 10 min) and internalization, kin = 0.07 min-1 (t 1/2 = 1 min). Approximately 15 min after internalization, low-molecular weight 125I-labeled degradation products began to appear in the medium. Release of this degraded 125I-CSF-1 was kinetically first order over three half-lives (Kd = 4.3 x 10(-2) min-1, t1/2 = 16 min). Thus CSF-1 binds to a single class of receptors on PEM, is internalized with a single rate limiting step, and is rapidly destroyed without segregation into more slowly degrading intracellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号