首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A cyclic nucleotide-independent, polyamine-responsive protein kinase from the cytosol of Morris hepatoma 3924A, which phosphorylated heat-stable endogenous substrates and casein in the presence of polyamines (Criss, W.E., Yamamoto, M., Takai, Y., Nishizuka, Y. and Morris, H.P. (1978) Cancer Res. 38, 3540-3545) was observed to be stimulated by an endogenous protein activator. This protein activator was identified to be calmodulin. the polyamine-responsive protein kinase was also stimulated by purified calmodulin, but only in the presence of polyamines such as polylysine. This action of calmodulin did not require Ca2+ for activation of the enzyme; and activation occurred in the presence of EGTA. DNA and RNA inhibited the polyamine-responsive protein kinase, either in the presence or absence of Ca2+. Purified calmodulin, in the presence of cyclic AMP or cyclic GMP, did not activate the protein kinase. Therefore, polyamines such as polylysine are an absolute requirement for this expression of calmodulin action. The increased enzyme activity by calmodulin was accompanied with an increased Vmax and with no changes in the Km (ATP). High levels of cation, up to 100 mM Mg2+, did not effect the action of calmodulin. These results indicate that tumor cytosolic polyamine-responsive protein kinase is regulated by calmodulin, the latter being increased in the tumor tissue.  相似文献   

2.
Regulation of the cyclic activity of asparaginase (obtained as a purified protein complex) by a reversible auto-phosphorylation process has been previously reported in the fungus Leptosphaeria michotii (West) Sacc. In the present study, the protein complex was purified in the presence of either a mixture of 3 protein phosphatase inhibitors (fluoride, vanadate and molybdate) or EGTA, during the cycle of asparaginase activity, and the protein kinase and protein phosphatase activities characterized. (I) At the phase of increasing asparaginase activity, a Ca2+/calmodulin-dependent kinase activity was identified by (a) its inhibition by calmidazolium, reversed by calmodulin, and its inhibition by EGTA, but not by poly(Glu/Tyr 4:1)n. dichloro-(ribofuranosyl)-benzimidazole or polylysine (b) an increasing level of calmodulin bound to the complex, as estimated by enzyme-linked immunosorbent assay (ELISA). (2) At the phase of decreasing asparaginase activity, the Ca2+-calmodulin-dependent kinase activity disappeared and a little calmodulin remained associated with the complex: phosphorylation of the complex was increased several-fold by 1 nM okadaic acid and 25 nM inhibitor-2, and was not affected by EGTA, indicating a protein phosphatase-2A-like activity. (3) When asparaginase activity was low, a little calmodulin was bound to the complex. The kinase could phosphorylate casein and phosvitin. was inhibited by poly(Glu/Tyr 4:1)n. dichloro-(ribofuranosyl)-benzimidazole and heparin, stimulated by polylysine and not affected by calmidazolium or EGTA, just as a casein kinase 2. A Ca2+-dependent but calmodulin-independent protein phosphatase activity, not affected by okadaic acid and inhibitor-2. was then identified. We postulate the presence in the complex, of (a) only one protein kinase and one protein phosphatase, whose properties could change during the cycle of asparaginase activity: (b) two Ca2+/-binding proteins: first calmodulin, which could bind to Ca2+ and the casein kinase-2 form to give a Ca2+/calmodulin-dependent kinase, which could become Ca2+/calmodulin-independent following an auto-phosphorylation process: second a protein homologous to calmodulin, able to bind to the protein phosphatase-2A catalytic subunit to give a protein phosphatase-2B catalytic subunit.  相似文献   

3.
《Experimental mycology》1987,11(3):231-235
Calmodulin has been isolated from uredospores of the bean rust fungus and purified to apparent homogeneity as judged using sodium dodecyl sulfatepolyacrylamide gels. The protein substituted for bovine calmodulin as an activator of Ca2+-dependent cyclic nucleotide phosphodiesterase. Its molecular mass was 15.6 kDa in the presence of Ca2+ and 17.0 kDa in its absence. ThepI was 4.4. The amino acid composition was generally similar to those of calmodulin from other fungi.  相似文献   

4.
N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), commonly regared as a calmodulin antagonist, inhibted phospholipid-sensitive Ca2+-dependent protein kinase and to a lesser extent cyclic GMP- and cyclic AMP-dependent protein kinases. Kinetic studies of the inhibition of the homogenous spleen phospholipid-sensitive Ca2+-dependent protein kinase indicated that W-7 inhibited the enzyme activity competitively with respect to phospholipid (Ki = 60 μM). N-(6-Aminohexyl)-1-naphthalenesulfonamide (W-5) was found to be musch less potent than W-7. The findings indicate that W-6 was able to inhibit a variety of protein kinases, in addition to those requiring calmodulin previously reported.  相似文献   

5.
Activation of Ca2+-calmodulin- and cyclic AMP-dependent protein kinases has been suggested to be involved in stimulus-secretion coupling in the pancreatic β-cell. To study the properties of such kinases and their endogenous protein substrates homogenates of rat islets of Langerhans were incubated with [γ-32P]ATP. Phosphorylated proteins were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and detected by autoradiography. The phosphorylation of certain proteins could be enhanced by Ca2+ plus calmodulin or by cyclic AMP. The major effect of Ca2+ and calmodulin was to stimulate the phosphorylation of a protein (P53) of molecular weight 53 100±500 (n = 15). Maximum phosphorylation of protein P53 occurred within 2 min with 2 μM free Ca2+ and 0.7 μM calmodulin. Incorporation of label into protein P53 was inhibited by trifluoperazine or W7 but not by cyclic AMP-dependent protein kinase inhibitor. Phosphorylation of a protein of similar molecular weight could be enhanced to a lesser extent in the absence of Ca2+ but in the presence of cyclic AMP and 3-isobutylmethylxanthine: this phosphorylation was blocked by cyclic AMP-dependent protein kinase inhibitor. Cyclic AMP also stimulated incorporation of label into polypeptides of molecular weights 55 000 and 70–80 000. The results are consistent with the hypothesis that protein phosphorylation mechanisms may play a role in the regulation of insulin secretion.  相似文献   

6.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

7.
An apparent enigma during platelet aggregation is that increased glycogenolysis occurs despite a fall in cyclic AMP levels. Activation by a classical cascade is therefore unlikely, and an alternative stimulus for phosphorylase a formation was sought. It was found that low levels of Ca2+ markedly activate phosphorylase b kinase from human platelets, with a Ka of 0.89 μM Ca2+, which is similar to that for the skeletal muscle enzyme. The kinase activity is unstable, and on enzyme ageing there is a 50% loss in activity with the Ka decreasing to 0.33 μM Ca2+.In unstimulated platelets, phosphorylase a was 13.3% of total measured activity, and glycogen synthetase I was 32.3%. Aggregation induced by ADP did not change the percentage of I synthetase, while increasing that for phosphorylase a. Dibutyryl cyclic AMP did, as expected, increase the percentage of both phosphorylated enzymes.These findings suggest that the natural activator of platelet glycogenolysis during aggregation is Ca2+, which directly stimulates phosphorylase b kinase without altering glycogen synthetase activity. The cyclic AMP-dependent protein kinase does not appear to be involved.  相似文献   

8.
The two soluble Ca2+-dependent protein kinases resolved from wheat (Triticum aestivum) embryo (protein kinases I and II) are inhibited by the phenothiazine-derived calmodulin antagonists trifluoperazine fluphenazine, and chlorpromazine. Protein kinases I and II are also inhibited by a variety of other calmodulin antagonists (including calmidazolium, amitriptyline, and iprindole), phosphodiesterase inhibitors (including flufenamic acid and papavarine) and by lanthanides. A number of compounds that inhibit mammalian Ca2+ - and phospholipid-activated protein kinase (protein kinase C) including quercetin, polymixin B sulfate, and polyamines (as well as phenothiazine derivatives) also inhibit protein kinases I and II. Poly-l-lysine and poly-l-ornithine activate both plant Ca2+-dependent protein kinases.  相似文献   

9.
Highly purified sarcolemmal membranes were prepared from pig heart homogenates by differential and density gradient centrifugations. The membrane fragments exhibit ATP-dependent Ca2+-transport and Na+/Ca2+-exchange activities. ATP-dependent Ca2+-transport (KCa2+0.5 = 0.3 μM; Vmax = 4.6 nmol Ca2+?mg protein?1 ?min?1)_is not stimulated by oxalate. Ca2+-uptake is also not supported by p-nitrophenylphosphate. Preincubation of sarcolemma with MgATP, calmodulin and catalytic subunit of cyclic AMP-dependent protein kinase stimulates active Ca2+-transport 1.8-fold. The effects of calmodulin and catalytic subunit are potentiating rather than additive. A large portion of the Ca2+ additionally accumulated after prephosphorylation of membranes is exchangable for Na+ via the Na+/Ca2+-exchange system.  相似文献   

10.
In brain tissue a spectrin-like calmodulin-binding protein calspectin, or fodrin, is concentrated in a synaptosome fraction, where most of the calspectin is associated with the synaptic membranes. This endogenous calspectin was phosphorylated by protein kinase system(s) associated with the membranes. Here, we report the solubilization and partial purification of the membrane-associated calspectin kinase activity. The activity was resolved on a gel filtration column into two fractions, peaks I and II having estimated Mr of 800 000 and 88 000. The activity of peak I was dependent on the presence of both Ca2+ and calmodulin. Peak II revealed a basal activity in the absence of Ca2+ and calmodulin, which was stimulated 2-fold by addition of Ca2+. Calmodulin had no effect on the peak II activity.  相似文献   

11.
A new calmodulin antagonist, genistein, was isolated from the culture broth of Strepto-sporangium vulgare K-254. The spectral data of K-254-I indicated that the compound was identical with genistein, 4/,5,7-trihydroxyisoflavone. Genistein inhibited the Ca2+/calmodulin-depen- dent activity of cyclic nucleotide phosphodiesterase from bovine brain (IC50 = 20 μΜ) without appreciably affecting its basal activity. The inhibitory activity of genistein was antagonized by higher concentrations of calmodulin. Although phosphatidylserine did not reverse the inhibition of calmodulin, genistein inhibited the phospholipid-sensitive, Ca2 +-dependent protein kinase (protein kinase C) from bovine brain (IC50 = 35.3 μΜ). The activity of cAMP-dependent protein kinase was not affected by 700 μΜ of genistein.  相似文献   

12.
Sarcoplasmic reticulum, isolated from canine cardiac muscle, was phosphorylated in the presence of exogenous cAMP-dependent protein kinase or calmodulin. This phosphorylation has been shown previously to activate sarcoplasmic reticulum calcium uptake (LePeuch et al. (1979) Biochemistry18, 5150–5157). Calmodulin appeared to activate an endogenous protein kinase present in sarcoplasmic reticulum membranes. The incorporation of phosphate increased with time. However, once all the ATP was consumed, the level of phosphorylated protein started to decrease due to the action of an endogenous protein phosphatase. Dephosphorylation occurred even when the level of phosphorylated sarcoplasmic reticulum remained constant at high ATP concentrations. The phosphorylation of sarcoplasmic reticulum in the presence of calmodulin, increased as the pH was increased from pH 5.5 to 8.5. This phosphorylation was only inhibited by KCl concentrations greater than 100 mm. The apparent Km of cAMP-dependent protein kinase for ATP was 5.2 ± 0.2 × 10?5m, and of the calmodulin-dependent protein kinase for ATP was 3.67 ± 0.29 × 10?5m. Phosphorylation was maximally activated by 5–10 mm MgCl2; higher MgCl2 concentrations inhibited this phosphorylation. Thus the calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum could be maximally activated at sarcoplasmic concentrations of K+, Mg2+, and ATP. The calmodulindependent phosphorylation was half-maximally activated at Ca2+ concentrations that were significantly greater than those required to promote the formation of the sarcoplasmic reticulum Ca-activated ATPase phosphoprotein intermediate. Thus at sarcoplasmic Ca2+ concentrations that might be expected during systole, the sarcoplasmic reticulum calcium pump would be fully activated before any significant calmodul-independent sarcoplasmic reticulum phosphorylation occurred. However, under certain pathological conditions when the sarcoplasmic Ca2+ becomes elevated (e.g., in ischemia) the kinase could be activated so that the sarcoplasmic reticulum would be phosphorylated and calcium uptake augmented. Thus, the calmodulin-dependent protein kinase may only function when the heart needs to rescue itself from a possibly fatal calcium overload.  相似文献   

13.
Ca2+ plays a major role in neurotransmission and synaptic modulation. Evidence is presented to support the calmodulin hypothesis of neurotransmission developed in this laboratory stating that calmodulin, a major Ca2+ binding protein in brain, mediates the effects of Ca2+ on neurotransmission. Calmodulin was isolated from highly enriched preparations of synaptic vesicles and nerve terminal cytoplasm. Ca2+ and calmodulin were shown to regulate several synaptic processes in isolated and intact preparations, including endogenous synaptic Ca2+-calmodulin protein kinase activity, neurotransmitter release, and synaptic vesicle and synaptic membrane interactions. Ca2+ and calmodulin were shown to activate a synaptic tubulin kinase system which was shown to be a distinct enzyme system from the cyclic AMP protein kinase. Ca2+ and calmodulin stimulated phosphorylation of tubulin altered the properties of tubulin, forming insoluble tubulin fibrils. Evidence for the role of Ca2+-calmodulin kinase activity, especially the calmodulin-tubulin kinase, in neurotransmission are presented. The effects of several neuroactive drugs on the synaptic calmodulin system are presented. The results support the hypothesis that calmodulin mediates many of calcium's actions at the synapse, and that the effects of Ca2+ on synaptic protein phosphorylation, especially synaptic tubulin, may provide a biochemical mechanism for converting the Ca2+ signal into a motor force in the process of neurotransmission.  相似文献   

14.
Y Iwasa  T Iwasa  K Matsui  K Higashi  E Miyamoto 《Life sciences》1981,29(13):1369-1377
Chromatin associated proteins such as histone and protamine and myelin basic protein inhibit the activities of calmodulin-dependent cyclic nucleotide phosphodiesterase and myosin light chain kinase supported by Ca2+ and calmodulin in a dose-dependent manner. The inhibition of these enzymes induced by the proteins is completely abolished by high concentration of calmodulin but not with that of Ca2+. Kinetic analysis of this inhibition reveals that the proteins inhibit these enzyme activities in a competitive fashion with calmodulin. The proteins bind to calmodulin on a calmodulin coupled-agarose affinity column in the presence of Ca2+. It is suggested that endogenous basic proteins interact with calmodulin and may modulate intracellular regulation by calmodulin.  相似文献   

15.
Ca2+-calmodulin tubulin kinase activity was isolated from brain cytosol and separated from its substrate protein, tubulin, and Ca2+ regulatory protein, calmodulin. Characterization of the Ca2+-tubulin kinase system revealed a Km of 4 μM, 0.5 μM, 60 μM for Ca2+, calmodulin and ATP, respectively. The tubulin kinase system bound to a calmodulin affinity column in the presence of Ca2+ and was released from the column by chelation with EGTA. A major 55,000 and a minor 65,000 dalton peptide were identified as the only calmodulin binding proteins in the enzyme fraction, indicating that one or both of these peptides represent the calmodulin binding subunit of the Ca2+-calmodulin tubulin kinase system.  相似文献   

16.
By using a peptide (CK-15) based on the COOH-terminal sequence of nodulin-26, we have demonstrated the presence of a Ca2+-dependent protein kinase in soluble as well as particulate fractions of nitrogen-fixing soybean (Glycine max) root nodules. Substantial enzyme activity was found in symbiosome membranes. The soluble enzyme was purified 1570-fold. The enzyme was fractionated from endogenous calmodulin and yet was fully activated by Ca2+ (K0.5 = 0.4 micromolar) in the absence of exogenous calmodulin, phosphatidylserine and 1,2-dioleylglycerol, oleic acid, and platelet activating factor. CK-15 was used to generate a site-specific antibody to nodulin-26. The antibody reacted with a protein in the symbiosome membrane with an apparent molecular mass of 27,000 daltons, consistent with the molecular mass predicted for nodulin-26 from the deduced amino acid sequence. A symbiosome membrane protein with an identical electrophoretic mobility was phosphorylated in vitro in a Ca2+-dependent manner. Additionally, this symbiosome membrane protein was phosphorylated when nodules were incubated with 32P-phosphate. Overall, the results show the existence of a Ca2+-dependent and calmodulin/lipid-independent enzyme in nitrogen-fixing soybean root nodules and suggest that nodulin-26 is a substrate for Ca2+-dependent phosphorylation.  相似文献   

17.
A soluble Ca2+- and Ca2+—calmodulin-activated protein kinase was partially purified from wheat germ. The phosphorylation of histones and casein catalyzed by this enzyme is largely Ca2+-dependent. After repeated gel filtration of the protein kinase in the presence of 1 mM EGTA, the phosphorylation of casein and histones by the enzyme is activated 3-fold and up to 16-fold, respectively, by added calmodulin (12.5 μM). Such activation of the protein kinase by calmodulin is Ca2+-dependent. The protein kinase binds to calmodulin—Sepharose 4B in a Ca2+-dependent fashion. This type of Ca2+-activated protein kinase may be involved in stimulus—response coupling in plants.  相似文献   

18.
In Vitro Stimulation of Protein Kinase C by Melatonin   总被引:2,自引:0,他引:2  
It has been shown that melatonin through binding to calmodulin acts both in vitro and in vivo as a potent calmodulin antagonist. It is known that calmodulin antagonists both bind to the hydrophobic domain of Ca2+ activated calmodulin, and inhibit protein kinase C activity. In this work we explored the effects of melatonin on Ca2+ dependent protein kinase C activity in vitro using both a pure commercial rat brain protein kinase C, and a partially purified enzyme from MDCK and N1E-115 cell homogenates. The results showed that melatonin directly activated protein kinase C with a half stimulatory concentration of 1 nM. In addition the hormone augmented by 30% the phorbol ester stimulated protein kinase C activity and increased [3H] PDBu binding to the kinase. In contrast, calmodulin antagonists (500 M) and protein kinase C inhibitors (100 M) abolished the enzyme activity. Melatonin analogs tested were ineffective in increasing either protein kinase C activity or [3H] PDBu binding. Moreover, the hormone stimulated protein kinase C autophosphorylation directly and in the presence of phorbol ester and phosphatidylserine. The results show that besides the melatonin binding to calmodulin, the hormone also interacts with protein kinase C only in the presence of Ca2+. They also suggest that the melatonin mechanism of action may involve interactions with other intracellular hydrophobic and Ca2+ dependent proteins.  相似文献   

19.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on Ca2+/calmodulin-dependent cyclic nucleotide (AMP) phosphodiesterase activity in rat liver cytosol was investigated. The addition of Ca2+ (50 µM) and calmodulin 160 U/ml in the enzyme reaction mixture caused a significant increase in cyclic AMP phosphodiesterase activity. This increase was inhibited by the presence of regucalcin (0.5-3.0 µM); the inhibitory effect was complete at 1.0 µM. Regucalcin (1.0 µM) did not have an appreciable effect on basal activity without Ca2+ and calmodulin. The inhibitory effect of regucalcin was still evident even at several fold higher concentrations of calmodulin (160–480 U/ml). However, regucalcin (1.0 µM) did not inhibit Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity in the presence of 100 and 200 µM Ca2+ added. Meanwhile, Cd2 (25–100 µM)-induced decrease in Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity was not reversed by the presence of regucalcin (1.0 µM). The present results suggest that regucalcin can regulate Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity due to binding Ca2+ in liver cells.  相似文献   

20.
The effect of regucalcin on Ca2+/calmodulin-dependent protein kinase activity in the cytosol of rat renal cortex was investigated. Regucalcin is a calcium-binding protein which exists in rat liver and renal cortex. Protein kinase activity in renal cortex cytosol was markedly increased by the addition of CaCl2 (0.5 mM) plus calmodulin (10 µg/ml) in the enzyme reaction mixture. This increase was completely prevented by the addition of trifluoperazine (25 µM), an antagonist of calmodulin. The cytosolic Ca2+/calmodulin- dependent protein kinase activity was clearly inhibited by the addition of regucalcin; an appreciable effect of regucalcin was seen at 0.01 µM. The cytosolic Ca2+/calmodulin-dependent protein kinase activity was fairly increased by increasing concentrations of added Ca2+ (100-1000 µM). This increase was markedly blocked by the presence of regucalcin (0.1 µM). The inhibitory effect of regucalcin on the protein kinase activity was also seen with varying concentrations of calmodulin (2-20 µg/ml). These results demonstrate that regucalcin can regulate Ca2+/calmodulin-dependent protein kinase activity in renal cortex cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号