首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both adipocyte plasma membranes and microsomes possess insulin-sensitive low Km cyclic AMP phosphodiesterase activity. The activity of the enzyme from both sources was susceptible to activation by several anionic phospholipids. Activators of the plasma membrane enzyme were lysophosphatidylglycerol greater than lysophosphatidylcholine greater than lysophosphatidylserine greater than phosphatidylserine greater than phosphatidylglycerol. These same phospholipids activated the microsomal enzyme but the extent of activation by each phospholipid was reversed. Neutral phospholipids and other anionic phospholipids were without effect. The phospholipids had no effect on high Km cAMP phosphodiesterase in either membrane. The results suggest that the phospholipid headgroup was an important determinant for enzyme activation by phospholipid. The increased susceptibility of the plasma membrane enzyme to lysophospholipid may be attributed to a difference in the plasma membrane enzyme compared to the microsomal membrane enzyme or to differences in plasma membrane and microsomal membrane phospholipid composition and their ability to regulate low Km cAMP phosphodiesterase activity.  相似文献   

2.
The effects of sulfonylureas and a biguanide on membrane-bound low Km cyclic AMP phosphodiesterase and lipolysis were examined in rat fat cells. Pharmacologically active sulfonylureas, such as tolbutamide (10 mM), acetohexamide (10 mM) and glibenclamide (200 μM) activated the phosphodiesterase when incubated with fat cells and suppressed lipolysis induced by isoproterenol. However, neither of these actions was observed in the presence of a pharmacologically inactive sulfonylurea, carboxytolbutamide (10 mM) and a biguanide, buformin (500 μM). Tolbutamide (0.5–10 mM) activated the enzyme, concentration dependently, and this manner of activation appears to coincide with that of the suppressive effect on the lipolysis. The time course of the enzyme activation was similar to that seen with insulin. Km, optimal pH and sensitivity to temperature of the enzyme from tolbutamide-treated cells were the same as those of the enzyme from control and insulin-treated cells. Direct incubation of the enzyme from control cells with tolbutamide did not affect the activity, while as little as 10 μM 3-isobutyl-1-methylxanthine markedly inhibited the enzyme. Tolbutamide continued to activate the enzyme in cells in which insulin receptor had been destroyed by trypsin-pretreatment. These results are compatible with the idea that the enzyme activated by sulfonylurea and that activated by insulin may be the same species of phosphodiesterase and that the antilipolytic action of sulfonylurea may be mediated by the activation of the enzyme which does not occur through the insulin receptor.  相似文献   

3.
The Dictyostelium discoideum membrane-bound and extracellular cyclic nucleotide phosphodiesterases (EC 3.1.4.17) shear several properties including the ability to react with a specific glycoprotein inhibitor and small inhibitory molecules. We have partialy purified the membrane-bound enzyme and compared its properties to those of the extracellular form. The kinetic properties of the two forms were similar except that, while associated with membrane particles, the membrane-bound form exhibited non-linear kinetics when assayed ove a broad substrate range. The isoelectric point of the membrane-bound phosphodiesterase was identical to that of the extracellular enzyme when isoelectrofocusing was done in the presence of 6 M urea. The molecular weights of membrane-bound and extracellular enzyme, determined by gel filtration, were the same following isoelectrofocusing in the presence of 6 M urea. When precipitated with an antiserum prepared against purified extracellular phosphodiesterase, the partially purified membrane-bound enzyme preparation was shown to contain a Mr 50 000 polypeptide comigrating with the extracellular enzyme during SDS polyacrylamide gel electrophoresis. When the iodinated extracellular enzyme and the iodinated Mr 50 000 polypeptide from membrane-bound enzyme were subjected to partial proteolytic digestion, similar profiles were obtained indicating extensive regions of homology.  相似文献   

4.
Some characteristics of the cyclic 3′,5′-nucleotide phosphodiesterase (phosphodiesterase) activity associated with the synaptosomal plasma membrane (synaptic membrane) and the synaptic junction fractions of rat brain are reported. Kinetic analysis revealed that only one type of phosphodiesterase activity, with a Km of 2 · 10?4 M for cyclic AMP, is associated with both fractions. The specific activities of the phosphodiesterase in synaptic membranes and synaptic junctions have been estimated at 23.4 nmol/min per mg protein and 22.5 nmol/min per mg protein, respectively. The synaptic junction-associated activity undergoes a 30% stimulation by Ca2+ while no Ca2+ sensitivity of the synaptic membrane-associated activity could be detected. Cytochemical studies performed on the synaptic membrane fraction demonstrated a predominant localization of phosphodiesterase activity over postsynaptic densities, while dense deposits were sometimes observed over the synaptic cleft region.  相似文献   

5.
We have previously characterized three forms of cyclic-AMP phosphodiesterase obtained after dithiothreitol activation of the enzyme from the extracellular medium during late vegetative growth of Dictyostelium discoideum (Toorchen, D. and Henderson, E.J. (1979) Biochem. Biophys. Res. Commun. 87, 1168–1175). This communication presents evidence supporting the earlier hypothesis that the observed heterogeneity of enzyme species is due to formation of complexes between an endogenous inhibitor protein and a common catalytic polypeptide. Dithiothreitol inactivates the inhibitor, but does not cause its release from the catalytic unit. Additional evidence is presented for the presence of a similar catalytic polypeptide in the extracellular phosphodiesterase produced during the first 8 h of developmetn, except that this species is a phosphoprotein.  相似文献   

6.
The cellular slime mold, Dictyostelium discoideum, contains at least two classes of phosphodiesterase activity. One class of enzymes hydrolyses cyclic AMP (cAMP) and cyclic GMP (cGMP) with approximately equal rates. Another enzyme, which is less than 5% of the total activity, specifically hydrolyses cGMP. The cGMP-specific enzyme does not bind to a Con A-Sepharose column, while all the cAMP-hydrolyzing activities are retarded by this column. The cGMP-specific enzyme is activated by low cGMP concentrations (10?8-10?6 M); the enzyme has normal Michaelis-Menten kinetics at high substrate concentrations with a Km of about 3–6 μM. The cGMP-binding sites for activation and for catalysis show different cyclic nucleotide specificity, but they are probably located on one protein with a molecular weight of about 70 000. The enzyme is stable only under specific conditions, and the activation property of the enzyme is lost relatively easy. Irreversible modifications occur at temperatures below 0° and above 30°C, and at pH below 6.0. Several other conditions such as high ion concentrations, temperatures just above 0°C and pH above 8.0 lead to reversibel modifications of enzyme activity.  相似文献   

7.
Phosphodiesterase 3B (PDE3B), is known to play an important role in acute insulin and cAMP-mediated regulation of lipid metabolism, and PDE4 are the main PDE types expressed in adipocytes. Here, we show that members of all PDE4 isoforms are expressed in 3T3-L1 and primary mouse adipocytes. Long-term treatment of 3T3-L1 adipocytes with insulin induced up-regulation of PDE3B and PDE4D in a phosphatidylinositol 3-kinase-dependent manner whereas long-term treatment with beta-adrenergic agonists induced down-regulation of PDE3B and up-regulation of PDE4D. Thus, PDE3B and PDE4D can be added to the list of genes regulated by insulin and cAMP-increasing hormones. Altered expression of PDE3B and PDE4D in response to long-term treatment with insulin and catecholamines may contribute to altered regulation of metabolism in diabetes.  相似文献   

8.
La3+ was found to inhibit the secretion of 5-hydroxytryptamine and the production of thromboxane B2 by washed platelets exposed to collagen or thrombin. In addition, La3+ inhibited secretion in response to sodium arachidonate, although the conversion of arachidonate to thromboxane B2 was not affected.La3+ was also found to enhance the accumulation of cyclic AMP under basal conditions and in response to prostaglandin E1, in washed platelets. The inhibition of cyclic AMP accumulation by ADP was prevented by La3+, suggesting that the effect of ADP on cyclic AMP metabolism was dependent upon the presence or flux of calcium at the platelet membrane.La3+ inhibited the activity of adenylate cyclase in platelet lysates both in response to prostaglandin E1 and to F?, indicating a possible effect at the catalytic subunit of the enzyme. None of the observed effects of La3+ could be reversed by the addition of Ca2+ up to 10 mM. The stimulation of cyclic AMP production by La3+ may largely explain the inhibitory effect of La3+ upon platelet secretion and thromboxane B2 production. These results also suggest that Ca2+ localised at the platelet plasma membrane may be important in the regulation of cyclic AMP metabolism.  相似文献   

9.
Hyperoxic exposure in vitro of two lung-derived cell types (the epithelial-derived L2 cells and WI-38 fibroblasts) inhibits cellular replication, produces striking morphologic changes and may result in cell death; these effects have been observed consistently in other cell types. Hyperoxic exposure of L2 cells is associated with an increase in cellular cyclic AMP content (cellular cyclic AMP content 454 ± 115 fmol/μg DNA in cells exposed to pO2 677 Torr for 96 h compared to 136 ± 17 fmol/μg DNA in air-grown cells). Hyperoxic exposure of WI-38 fibroblasts is not associated with increased cyclic AMP content. Although cultivation of L2 cells in the presence of exogenous dibutyryl cyclic AMP does inhibit replication and produce morphologic alterations, similar effects are produced by sodium butyrate alone. Hyperoxic exposure alters cyclic AMP metabolism in some cell types, but the structural and functional alterations observed in L2 cells and WI-38 fibroblasts following hyperoxic exposure are not produced by changes in cellular cyclic AMP content.  相似文献   

10.
Numerous cellular biochemical events caused by hormones are mediated throught cyclic AMP. Although many changes occur in the cell during exercise that could be attributed to this nucleotide, little evidence is available implicating it as an important regulator of exercise metabolism. In this investigation it was found that a 60 min bout of treadmill exercise caused a 2.4-fold increase in myocardial cyclic AMP immediately following the work. Rather than the imemediate nucleotide hydrolysis that was expected, it was found that the elevated cyclic AMP level remained for approx. 24 h before returning to control levels. Cardiac glycogen fell to 30% of control after work but supercompensated 60% above control within 1 h following exercise. Therefore, cardiac cyclic AMP was elevated at a time when glycogen was being synthesized. Study of the temporal relationship between the exercise-induced increase in cyclic AMP and cyclic nucleotide phosphodiesterase indicated that the work caused an increase in the hearts' capacity to hydrolyze cyclic AMP. Measurement of heart phosphodiesterase at substrate concentrations of 1.0 and 100 μM produced significant increased in enzyme activity immediately following exercise which remained elevated for 48 h and was back to control activity 96 h following work. These data present a potentially fascinating model for the study of the dissociation between cyclic AMP, glycogenesis and elevations in phosphodiesterase activity in the heart.  相似文献   

11.
We have previously reported that acute stress increases levels of rat pituitary cyclic AMP in vivo. The present study was conducted to test the hypothesis that stress-induced increases in pituitary cyclic AMP in vivo were mediated via CRF. We compared the effects of various stressors with the effects of CRF or epinephrine administration on pituitary cyclic AMP and plasma ACTH responses in vivo. Stressors, epinephrine or CRF increased levels of pituitary cyclic AMP. Pituitary cyclic AMP response to either immobilization or CRF was much greater at light onset than at lights off in rats maintained on at 12 hr light: 12 hr dark lighting regimen. In rats with pituitary stalk transections, footshock did not increase levels of pituitary cyclic AMP, suggesting that some factor of central origin was required for this stress response. Exogenous CRF administration did increase levels of pituitary cyclic AMP in stalk-transected rats, while epinephrine increased levels in sham-operated but not in stalk-transected rats. Antisera to CRF markedly decreased pituitary cyclic AMP response to exogenous CRF administered 6 min following antisera and partially attenuated pituitary cyclic AMP response to forced running. Taken as a whole these data support a major role for CRF in the pituitary cyclic AMP response to stress.  相似文献   

12.
The process of cyclic AMP efflux from rat islets of Langerhans has been studied. The dynamics of glucose-induced cyclic AMP efflux closely resembled the pattern of glucose-induced insulin release. Thus, both processes were dose-dependent for glucose having the same threshold concentrations (4–8 mmol/l glucose), with the time course of cyclic AMP efflux and insulin release from 0–60 min being very similar. Galactose did not affect insulin release, cyclic AMP efflux and intra-islet cyclic AMP accumulation. On the other hand, inosine, N-acetylglucosamine, α-ketoisocaproic acid, L-leucine and xylitol all promoted insulin release and cyclic AMP efflux. Except for L-leucine, all these substances enhanced the intracellular accumulation of cyclic AMP. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, greatly augmented all these parameters in the presence of glucose whereas in the absence of glucose, insulin release was not enhanced, while both cyclic AMP efflux and cyclic AMP accumulation were elevated. The drug, probenecid, did not alter either insulin release or intra-islet cyclic AMP levels, while cyclic AMP efflux was markedly reduced (though not abolished). Papaverine inhibited both insulin release and cyclic AMP efflux, but was found to augment the intra-islet cyclic AMP levels. The efflux of cyclic AMP correlates more closely with insulin release than with the cyclic AMP accumulation in most instances. The efflux is independent of either insulin secretory granule extrusion or intracellular fluctuations of the nucleotide, though it is not yet known whether cyclic AMP efflux may have some regulatory significance in insulin release.  相似文献   

13.
The hydrolysis of cyclic AMP and cyclic GMP by homogenates of normal bovine parathyroid gland and human parathyroid adenomas was decreased by EGTA. When supernatants were chromatographed on DEAE-cellulose it was found that sheep brain calmodulin in the presence of calcium stimulated cyclic AMP and cyclic GMP phosphodiesterase activity. The response to calmodulin in two human parathyroid adenomas was less than that in normal bovine parathyroid. Calmodulin was detected in heat-treated supernatants of 11 parathyroid adenomas by its ability to activate calmodulin-free sheep brain phosphodiesterase. The results suggest a role for calcium in the hydrolysis of cyclic nucleotides in parathyroid tissue.  相似文献   

14.
The effect of regucalcin, a novel Ca2+-binding protein, on Ca2+/ calmodulin-dependent cyclic adenosine monophosphate (AMP) phosphodiesterase activity in the cytosol of rat renal cortex was investigated. Regucalcin with physiologic concentration (10-7 M) in rat kidney had no effect on cyclic AMP phosphodiesterase activity in the absence of CaCl2 and calmodulin. However, the activatory effect of both CaCl2 (10 µM) and calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was markedly inhibited by the addition of regucalcin (10-8 to 10-6 M) in the enzyme reaction mixture. The inhibitory effect of regucalcin on the enzyme activity was also seen in the presence of CaCl2 (5-50 µM) or calmodulin (5-50 U/ml) with increasing concentrations. The presence of trifluoperazine (10 µM), an antagonist of calmodulin, caused a partial inhibition of Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activity. This inhibition was further enhanced by the addition of regucalcin (10-7 M). The inhibitory effect of regucalcin (10-7 M) was not seen in the presence of 20 µM trifluoperazine. Moreover, the activatory effect of calmodulin (20 U/ml) on cyclic AMP phosphodiesterase was not entirely seen, when calmodulin was added 10 min after incubation in the presence of CaCl2 (10 µM) and regucalcin (10-7 M). The present results demonstrates that regucalcin has an inhibitory effect on Ca2+ /calmodulin-dependent cyclic AMP phosphodiesterase activation in the cytosol of rat renal cortex.  相似文献   

15.
The interaction between the (Na+ + K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5′-AMP, cyclic GMP or 5′-GMP, could inhibit the (Na+ + K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ + K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854–3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ + K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ + K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ + K+)-ATPase, resulted in a decrease in overall (Na+ + K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ + K+)-ATPase has no effect on (Na+ + K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ + K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ + K+)-ATPase was unaffected.  相似文献   

16.
The effects of phospholipid vesicles and divalent cations in the subphase solution on the surface tension of phospholipid monolayer membranes were studied in order to elucidate the nature of the divalent cation-induced vesicle-membrane interaction. The monolayers were formed at the air/water interface. Various concentrations of unilamellar phospholipid (phosphatidylserine, phosphatidylcholine and their mixtures) vesicles and divalent cations (Mg2+, Ca2+, Mn2+, etc.) were introduced into the subphase solution of the monolayers. The changes of surface tension of monolayers were measured by the Wilhelmy plate (Teflon) method with respect to divalent ion concentrations and time.When a monolayer of phosphatidylserine and vesicles of phosphatidylserine/phosphatidylcholine (1 : 1) were used, there were critical concentrations of divalent cations to produce a large reduction in surface tension of the monolayer. These concentrations were 16 mM for Mg2+, 7 mM for Sr2+, 6 mM for Ca2+, 3.5 mM for Ba2+ and 1.8 mM for Mn2+. On the other hand, for a phosphatidylcholine monolayer and phosphatidylcholine vesicles, there was no change in surface tension of the monolayer up to 25 mM of any divalent ion used. When a phosphatidylserine monolayer and phosphatidylcholine vesicles were used, the order of divalent ions to effect the large reduction of surface tension was Mn2+ > Ca2+ > Mg2+ and their critical concentrations were in between the former two cases. The threshold concentrations also depended upon vesicle concentrations as well as the area/molecule of monolayers. For phosphatidylserine monolayers and phosphatidylserine/phosphatidylcholine (1 : 1) vesicles, above the critical concentrations of Mn2+ and Ca2+, the surface tension decreased to a value close to the equilibrium pressure of the monolayers within 0.5 h.This decrease in surface tension of the monolayers is interpreted partly as the consequence of fusion of the vesicles with the monolayer membranes. The  相似文献   

17.
Dispersed acini from dog pancreas were used to examine the ability of dopamine to increase cyclic AMP cellular content and the binding of [3H]dopamine. Cyclic AMP accumulation caused by dopamine was detected at 1·10−8 M and was half-maximal at 7.9±3.4·10−7M. The increase at 1·10−5 M, (7.5-fold) was equal to the half-maximal increase caused by secretin at 1·10−9 M. Haloperidol, a dopaminergic receptor antagonist inhibited cyclic AMP accumulation caused by dopamine. The IC50 value for haloperidol, calculated from the inhibition of cyclic AMP increase caused by 1·10−5 M dopamine was 2.3±0.9·10−6M. Haloperidol did not alter basal or secretin-stimulated cyclic AMP content. [3H]Dopamine binding was studied on the same batch of cells as cyclic AMP accumulation. At 37°C, it was rapid, reversible, saturable and stereospecific. The Kd value for high affinity binding sites was 0.43±0.1·10−7M and 4.7±1.6·10−7M for low affinity binding sites. The concentration of drugs necessary to inhibit specific binding of dopamine by 50% was 1.2±0.4·10/t-7M noradrenaline, 2·10/t-7 M epinine, 4.1±1.8·10/t-6M fluphenazine, 8.0±1.6·10/t-6M haloperidol, 4.2±1.2·10−6Mcis-flupenthixol, 2.7±0.4·10−5Mtrans-flupenthixol, >1·10−5M apomorphine, sulpiride, naloxone and isoproterenol.  相似文献   

18.
We have studied β-adrenergic stimulation of cyclic AMP formation in fragmented membranes and in unsealed or resealed ghosts prepared from rat reticulocytes. The maximal rate of isoprenaline-stimulated cyclic AMP formation with saturating MgATP concentrations and in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine was 5–8 nmol/min per ml ghosts are remained constant for at least 15 min. Transition from resealed ghosts to fragmented membranes was associated with a shift of the activation constant (Ka) for (±)-isoprenaline from 0.1 to 0.6 μM. The apparent dissociation constant for propranolol (0.01 μM) remained unchanged. The Ka values for isoprenaline in native reticulocytes and in resealed ghosts were identi The stimulating effect of NaF on cyclic AMP formation in resealed ghosts reached 15% of maximal β-adrenergic stimulation. Cyclic AMP formation, both in fragmented membranes and in ghosts, was half-maximally inhibited with Ca2+ concentrations ranging between 0.1 and 1 μM. GTP stimulated iosprenaline-dependent cyclic AMP formation in unsealed ghosts and in fragmented reticulocyte membranes by a factor of 3–5 but did not change the Ka value for isoprenaline. Ka values for the guanylnucleotides in different experiments varied between 0.3 and 2 μM. Ca2+ concentrations up to 4.6 μM reduced the maximal activation by GTP and Gpp(NH)p but did not affect their Ka values. Compared to GTP, maximal activation by Gpp(NH)p was higher in fragmented membranes, but much lower in ghosts. Our results suggest that the native β-receptor adenylate cyclase system of reticulocytes is more closely approximated in the ghost model than in fragmented membrane preparations. Membrane properties seem to modulate the actions of guanylnucleotides on isoprenaline-dependent cyclic AMP formation in ghosts. Some of these effects are not observed in isolated membranes.  相似文献   

19.
The concentration of cyclic AMP and cyclic GMP were measured in the denervated rat diaphragm at various times following unilateral phrenicectomy. Cyclic AMP concentration was raised by the second day after operation, reached a peak by the third day, followed by another increase at around 10 days. By contrast, cyclic GMP concentration was decreased within a day after denervation and remained below control levels at all subsequent times studied. Epinephrine in vitro produced a comparable increase in the concentration of cyclic AMP in both normal and denervated tissue. The concentration of adenosine appeared unchanged in the denervated diaphragm by comparison with its innervated contorl. Activity of ornithine decarboxylase was elevated in the diaphragms of rats treated with dibutyryl cyclic AMP, but this effect could also be achieved with sodium butyrate alone. Adenosylmethionine decarboxylase activity was unaffected after treatment with either compound. These observations and others discussed are taken to indicate a lack of direct relationship between cyclic AMP concentrations and the activity of the rate-limiting enzymes of polyamine biosynthesis in the rat diaphragm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号