首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthesis of oxalic Acid by enzymes from lettuce leaves   总被引:3,自引:0,他引:3       下载免费PDF全文
A rapid purification of lactate dehydrogenase and glycolate oxidase from lettuce (Lactuca sativa) leaves is described. The kinetics of both enzymes are reported in relation to their possible roles in the production of oxalate. Lettuce lactate dehydrogenase behaves like mammalian dehydrogenase, catalyzing the dismutation of glyoxylate to glycolate and oxalate. A model is proposed in which glycolate oxidase in the peroxisomes and lactate dehydrogenase in the cytosol are involved in the production of oxalate. The effect of pH on the balance between oxalate and glycolate produced from glyoxylate suggests that in leaves lactate dehydrogenase may function as part of an oxalate-based biochemical, pH-stat.  相似文献   

2.
In this study, we attempted to elucidate the metabolic pathway and enzymes actually involved in oxalate formation from glycolate in rat and human liver. In rat liver, the formation of oxalate from glycolate appeared to take place predominantly via glyoxylate. The oxalate formation from glycolate observed with crude enzyme preparations was almost entirely accounted for by the sequential actions of glycolate oxidase and xanthine oxidase (XOD) or lactate dehydrogenase (LDH). Under the conditions used, no significant activity was attributable to glycolate dehydrogenase, an enzyme reported to catalyze the direct oxidation of glycolate to oxalate. Among the three enzymes known to catalyze the oxidation of glyoxylate to oxalate, glycolate oxidase and XOD showed much lower activities (a higher Km and lower Vmax) toward glyoxylate than those with the respective primary substrates. As to LDH, none of the LDH subunit-deficient patients examined showed profoundly lowered urinary oxalate excretion. Based on the results obtained, the presumed efficacies in vivo of individual enzymes, as catalysts of glyoxylate oxidation, and the in vivo conditions assumed to allow their catalysis of oxalate production are discussed.  相似文献   

3.
Glycolate oxidase was isolated and partially purified from human and rat liver. The enzyme preparation readily catalyzed the oxidation of glycolate, glyoxylate, lactate, hydroxyisocaproate and α-hydroxybutyrate. The oxidation of glycolate and glyoxylate by glycolate oxidase was completely inhibited by 0.02 m dl-phenyllactate or n-heptanoate. The oxidation of glyoxylate by lactic dehydrogenase or xanthine oxidase was not inhibited by 0.067 m dl-phenyllactate or n-heptanoate. The conversion of [U-14C] glyoxylate to [14C] oxalate by isolated perfused rat liver was completely inhibited by dl-phenyllactate and n-heptanoate confirming the major contribution of glycolate oxidase in oxalate synthesis. Since the inhibition of oxalate was 100%, lactic dehydrogenase and xanthine oxidase do not contribute to oxalate biosynthesis in isolated perfused rat liver. dl-Phenyllactate also inhibited [14C] oxalate synthesis from [1-14C] glycolate, [U-14C] ethylene glycol, [U-14C] glycine, [3-14C] serine, and [U-14C] ethanolamine in isolated perfused rat liver. Oxalate synthesis from ethylene glycol was inhibited by dl-phenyllactate in the intact male rat confirming the role of glycolate oxidase in oxalate synthesis in vivo and indicating the feasibility of regulating oxalate metabolism in primary hyperoxaluria, ethylene glycol poisoning, and kidney stone formation by enzyme inhibitors.  相似文献   

4.
Chicken liver lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC1.1.1.27) catalyses the reversible reduction reaction of hydroxypyruvate to L-glycerate. It also catalyses the oxidation reaction of the hydrated form of glyoxylate to oxalate and the reduction of the non-hydrated form of glyoxylate to oxalate and the reduction of the non-hydrated form to glycolate. At pH 8, these latter two reactions are coupled. The coupled system equilibrium is attained when the NAD+/NADH ratio is greater than unity. Hydroxypyruvate binds to the enzyme at the same site as the pyruvate. When there are substances with greater affinity to this site in the reaction medium and their concentration is very high, hydroxypyruvate binds to the enzyme at the L-lactate site. In vitro and with purified preparation of lactate dehydrogenase, hydroxypyruvate stimulates the production of oxalate from glyoxylate-hydrated form and from NAD; the effect is due to the fact that hydroxypyruvate prevents the binding of non-hydrated form of glyoxylate to the lactate dehydrogenase in the pyruvate binding site. At pH 8, THE L-glycerate stimulates the production of glycolate from glyoxylate-non-hydrated form and NADH since hydroxypyruvate prevents the binding of glyoxylate-hydrated form to the enzyme  相似文献   

5.
Influence of stem extract of banana (family Musaceae), was studied on glycolic acid oxidase (GAO) and lactate dehydrogenase enzymes, calcium, phosphorus, oxalate and glycolic acid in liver tissues of sodium glycolate-induced hyperoxaluric rats. Activity of GAO was significantly lowered in the extract-treated rats compared to that of the glycolate-fed rats. LDH increased significantly in glycolate administered rats when compared with the extract-treated rats. The levels of calcium, phosphorus, oxalate and glycolic acid during hyperoxaluric state showed remarkable alterations in liver tissue.  相似文献   

6.
Carmen Lluis  Jorge Bozal 《BBA》1977,461(2):209-217
Chicken liver lactate dehydrogenase (l-lactate: NAD+ oxidoreductase, EC 1.1.1.27) catalyses the reversible reduction reaction of hydroxypyruvate to l-glycerate. It also catalyses the oxidation reaction of the hydrated form of glyoxylate to oxalate and the reduction of the non-hydrated form to glycolate. At pH 8, these latter two reactions are coupled. The coupled system equilibrium is attained when the NAD+/NADH ratio is greater than unity.Hydroxypyruvate binds to the enzyme at the same site as the pyruvate. When there are substances with greater affinity to this site in the reaction medium and their concentration is very high, hydroxypyruvate binds to the enzyme at the l-lactate site. In vitro and with purified preparation of lactate dehydrogenase, hydroxypyruvate stimulates the production of oxalate from glyoxylate-hydrated form and from NAD; the effect is due to the fact that hydroxypyruvate prevents the binding of non-hydrated form of glyoxylate to the lactate dehydrogenase in the pyruvate binding site. At pH 8, the l-glycerate stimulates the production of glycolate from glyoxylate-non-hydrated form and NADH since hydroxypyruvate prevents the binding of glyoxylate-hydrated form to the enzyme.  相似文献   

7.
乙醇酸、乙醛酸和草酸能明显促进烟草(Nicotiana rustica)叶片在黑暗中的硝酸还原,光呼吸抑制剂a-羟基吡啶甲烷磺酸能消除前二者的促进作用而不能完全消除草酸的作用。草酸+NAD~+能显著促进离体的硝酸还原。烟叶提取液加入草酸和NAD~+后生成NADH和CO_2认为活体内由乙醛酸氧化生成的草酸是经脱氢生成NADH供硝酸还原之用。未能证明在烟叶内存在乙醇酸脱氨酶,因此排除由乙醇酸直接脱氢以还原硝酸的可能。  相似文献   

8.
The concentrations of glycolate (hydroxyacetate) and lactate are significantly elevated above control values in urines from streptozotocin-diabetic rats, regardless of whether data are expressed in terms of μg/ml urine or μg/day. The same levels of oxalate and glyoxylate are excreted in 24 h in the urines from normal and diabetic rats. Lactate levels are elevated above control values in serum from streptozotocin-diabetic rats.The elevation of glycolate levels in diabetic rat urine compared to control values occurs regardless of diet and regardless of whether rats were fed or fasted during the 24 h urine collection period.Rat liver glycolate oxidase may be used to assay glycolate concentrations in the presence of up to 500 μg/ml l-lactate when pH 8.6 Tris-Cl is used as buffer. Results obtained with this assay compare qualitatively with the standard colorimetric assay using 2,7-dihydroxynaphthlene for glycolate determination. Beef liver glycolate oxidase is not effective for use in glycolate assays. The identity of urinary glycolate was confirmed by gas-liquid and by paper chromatography.  相似文献   

9.
Oxalate synthesis in human hepatocytes is not well defined despite the clinical significance of its overproduction in diseases such as the primary hyperoxalurias. To further define these steps, the metabolism to oxalate of the oxalate precursors glycolate and glyoxylate and the possible pathways involved were examined in HepG2 cells. These cells were found to contain oxalate, glyoxylate, and glycolate as intracellular metabolites and to excrete oxalate and glycolate into the medium. Glycolate was taken up more effectively by cells than glyoxylate, but glyoxylate was more efficiently converted to oxalate. Oxalate was formed from exogenous glycolate only when cells were exposed to high concentrations. Peroxisomes in HepG2 cells, in contrast to those in human hepatocytes, were not involved in glycolate metabolism. Incubations with purified lactate dehydrogenase suggested that this enzyme was responsible for the metabolism of glycolate to oxalate in HepG2 cells. The formation of 14C-labeled glycine from 14C-labeled glycolate was observed only when cell membranes were permeabilized with Triton X-100. These results imply that peroxisome permeability to glycolate is restricted in these cells. Mitochondria, which produce glyoxylate from hydroxyproline metabolism, contained both alanine:glyoxylate aminotransferase (AGT)2 and glyoxylate reductase activities, which can convert glyoxylate to glycine and glycolate, respectively. Expression of AGT2 mRNA in HepG2 cells was confirmed by RT-PCR. These results indicate that HepG2 cells will be useful in clarifying the nonperoxisomal metabolism associated with oxalate synthesis in human hepatocytes. liver; peroxisomes; hepatocytes; hyperoxaluria; alanine:glyoxylate aminotransferase; glyoxylate reductase  相似文献   

10.
The metabolic pathway by which L-[14C1]phenylalanine, L-[14C1]tyrosine, L-[14C1]tryptophan, and L-[14C1]ascorbic acid are converted to [14C]oxalate have been investigated in the male rate. Only [14C]oxalate was detected in the urine of rats injected with L-[14C1]ascorbic acid, but [14C]-labeled oxalate, glycolate, glyoxylate, glycolaldehyde, glycine, and serine were recovered from the [14C1]-labeled aromatic amino acids. DL-Phenyllactate, an inhibitor of glycolic acid oxidase and glycolic acid dehydrogenase, reduced the amount of [14C]oxalate recovered in the urine of rats given the [14C1]-labeled aromatic amino acids, but increased the amount of [14C]glycolate formed from L-[14C1]-phenylalanine and L-[14C1]tyrosine and the amount of [14C]glycolate produced from [14C1]tryptophan. Based on the [14C]labeled intermediates identified and the relative distribution of the radioactivity, it is postulated that phenylalanine and tyrosine are converted to oxalate via glycolate which is oxidized directly to oxalate by glycolic acid dehydrogenase. Tryptophan is metabolized via glyxylate which is oxidized directly to oxalate by glycolic acid oxidase. Neither glycolate, glyoxylate, glycolic acid oxidase or glycolic acid dehydrogenase are involved in the formation of oxalate from ascorbic acid.  相似文献   

11.
植物中草酸积累与光呼吸乙醇酸代谢的关系   总被引:7,自引:1,他引:6  
对几种C3 和C4 植物中草酸含量及相应的乙醇酸氧化酶活性测定结果表明 :叶片光呼吸强度及其关键酶活性大小与草酸积累量没有相关性 ;植物根中均能积累草酸 ,但未测出乙醇酸氧化酶活性。烟草根、叶中的草酸含量在不同生长时期差异明显 ,且二者呈极显著正相关 (y =2 .5 6 5lnx 2 .137,r =0 .749,P <0 .0 0 1) ,说明根中草酸可能来自叶片。氧化乙醇酸的酶的活性与氧化乙醛酸的酶的活性呈极显著线性正相关 (y =0 .2 41x 0 .0 0 6 ,r=0 .96 7,P <0 .0 0 0 1) ,进一步证实是乙醇酸氧化酶催化了两种底物的反应。烟草在不同生长期叶片中草酸总含量变化与相应的乙醇酸氧化酶活性变化亦没有相关性 ;低磷胁迫可显著诱导烟草根叶中的草酸形成和分泌 ,但并未影响乙醇酸氧化酶活性 ,进一步证明草酸积累与该酶活性大小无关  相似文献   

12.
Carbon-14 was incorporated from citrate-1,5-14C, glyoxylate-14C(U), or glyoxylate-1-14C into oxalate by cultures of Aspergillus niger pregrown on a medium with glucose as the sole source of carbon. Glyoxylate-14C(U) was superior to glyoxylate-1-14C and citrate-1,5-14C as a source of incorporation. By addition of a great amount of citrate the accumulation of oxalate was accelerated and its maximum yield increased. In a cell-free extract from mycelium forming oxalate from citrate the enzyme oxaloacetate hydrolase (EC3.7.1.1) was identified. Its in vitro activity per flask exceeded the rate of in vivo accumulation of oxalate. Glyoxylate oxidizing enzymes (glycolate oxidase, EC1.1.3.1; glyoxylate oxidase, EC1.2.3.5;NAD(P)-dependent glyoxylate dehydrogenase; glyoxylate dehydrogenase, CoA-oxalylating, EC1.2.1.7) could not be detected in cell-free extracts. It is concluded that in cultures accumulating oxalate from citrate after pregrowth on glucose, oxalate arises by hydrolytic cleavage of oxaloacetate but not by oxidation of glyoxylate.  相似文献   

13.
An enzymatic assay was developed for the spectrophotometric determination of glycolate in urine and plasma. Glycolate was first converted to glyoxylate with glycolate oxidase, and the glyoxylate formed was condensed with phenylhydrazine. The glyoxylate phenylhydrazone formed was then oxidized with K(3)Fe(CN)(6) in the presence of excess phenylhydrazine, and A(515) of the resulting 1, 5-diphenylformazan was measured. Since glycolate oxidase also acts on glyoxylate and L-lactate, the incubation of samples with glycolate oxidase was carried out in 120-170 mM Tris-HCl (pH 8.3) to obtain glyoxylate as its adduct with Tris. The pyruvate formed from lactate was removed by subsequent brief incubation with alanine aminotransferase in the presence of L-glutamate, and alpha-ketoglutarate formed was converted back to L-glutamate by glutamate dehydrogenase and an NADPH generating system. Thus the specificity of the assay relies principally on the substrate specificity of glycolate oxidase, and high sensitivity is provided by the high absorbance of 1,5-diphenylformazan at 515-520 nm. Plasma was deproteinized with perchloric acid, and then neutralized with KOH. Plasma and urine samples were then incubated with approximately 5 mM phenylhydrazine, and then treated with stearate-deactivated activated charcoal to remove endogenous keto and aldehyde acids as their phenylhydrazones. The normal plasma glycolate and urinary glycolate/creatinine ratio for adults determined by this method are approximately 8 microM and approximately 0.036, respectively.  相似文献   

14.
Calcium oxalate formation in Lemna minor L. occurs in structurally specialized cells called crystal idioblasts. Cytochemical and immunocytochemical protocols were employed to study the distribution of peroxisomes and the enzymes glycolate oxidase, glycine decarboxylase and ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) in relation to synthesis of oxalate used for Ca oxalate formation. These enzymes are necessary for photorespiratory glycolate synthesis and metabolism. Using catalase cytochemistry, microbodies were found to exist in crystal idioblasts but were smaller and fewer than those found in mesophyll cells. Glycolate oxidase, which can oxidize glycolate to oxalate via glyoxylate, could not be found in microbodies of crystal idioblasts at any stage of development. This enzyme increased in amount in microbodies of mesophyll cells as they matured and could even be found in dense amorphous inclusions of mature cell peroxisomes. Glycine decarboxylase and RuBisCO could also be detected in increasing amount in mesophyll cells as they matured but could not be detected in idioblasts or were just detectable. Thus, Lemna idioblasts lack the machinery for synthesis of oxalate from glycolate. Based on these results and other available information, two general models for the generation and accumulation of oxalate used for Ca oxalate formation in crystal idioblasts are proposed. The biochemical specialization of crystal idioblasts indicated by this study is also discussed with respect to differentiation of cellular structure and function.  相似文献   

15.
The complete amino acid sequence of rat kidney long chain alpha-hydroxy acid oxidase has been determined by microsequencing, using a number of standard enzymatic and chemical cleavages. Peptides were purified by high pressure liquid chromatography or by gel electrophoresis followed by electrotransfer. The sequence comprises 352 residues and ends with a peroxisomal targeting sequence SRL. The present work definitely establishes that hydroxy acid oxidase is a member of the family of FMN-dependent alpha-hydroxy acid-oxidizing enzymes. The family includes lactate oxidase, short chain alpha-hydroxy acid oxidase (glycolate oxidase), flavocytochrome b2, and mandelate dehydrogenase. There are altogether 45 totally conserved positions among the six sequences known. The sequence similarities are analyzed in light of the known three-dimensional structure of flavocytochrome b2 and glycolate oxidase. It is concluded that long chain hydroxy acid oxidase should be folded as a beta 8 alpha 8 barrel and should dehydrogenate alpha-hydroxy acids according to the same chemical mechanism as other enzymes of the family, in spite of a Tyr----Phe substitution at the active site.  相似文献   

16.
Cell-free extracts of Chlorella pyrenoidosa contained two enzymes capable of oxidizing d-lactate; these were glycolate dehydrogenase and NAD(+)-dependent d-lactate dehydrogenase. The two enzymes could be distinguished by differential centrifugation, glycolate dehydrogenase being largely particulate and NAD(+)-d-lactate dehydrogenase being soluble. The reduction of pyruvate by NADH proceeded more rapidly than the reverse reaction, and the apparent Michaelis constants for pyruvate and NADH were lower than for d-lactate and NAD(+). These data indicated that under physiological conditions, the NAD(+)-linked d-lactate dehydrogenase probably functions to produce d-lactate from pyruvate.Lactate dehydrogenase activity dependent on NAD(+) was found in a number of other green algae and in the green tissues of a few lower land plants. When present in species which contain glycolate oxidase rather than glycolate dehydrogenase, the enzyme was specific for l-lactate rather than d-lactate. A cyclic system revolving around the production and utilization of d-lactate in some species and l-lactate in certain others is proposed.  相似文献   

17.
Glycolate oxidase was purified and crystallized from cotyledons of germinating pumpkin seedlings. The molecular weight of the enzyme was determined to be 280,000-320,000, consisting of 8 identical subunits with molecular weight of 38,000. There are two absorption peaks at 340 and 450 nm, indicating the glycolate oxidase is a flavin protein. Several kinetic parameters were determined, Km (glycolate) 0.33 mM and Km (O2) 76.2 microM at pH 8.0. Oxalate and oxalacetate were found to be potent competitive inhibitors against glycolate; the Ki values for oxalate and oxalacetate were 4.5 and 7.8 mM, respectively. Fatty acids such as linoleic acid inhibited the enzyme noncompetitively; the Km for linoleic acid was 0.63 mM. The regulation of glycolate oxidase in the glycolate pathway occurring in leaf peroxisomes is discussed.  相似文献   

18.
Glycolate oxidase, an FMN-dependent peroxisomal oxidase, plays an important role in plants, related to photorespiration, and in animals, where it can contribute to the production of oxalate with formation of kidney stones. The best studied plant glycolate oxidase is that of spinach; it has been expressed as a recombinant enzyme, and its crystal structure is known. With respect to animals, the enzyme purified from pig liver has been characterized in detail in terms of activity and inhibition, the enzyme from human liver in less detail. We describe here the purification and initial characterization of the recombinant human glycolate oxidase. Its substrate specificity and the inhibitory effects of a number of anions are in agreement with the properties expected from previous work on glycolate oxidases from diverse sources. The recombinant enzyme presents an inhibition by excess glycolate and by excess DCIP, which has not been documented before. These inhibitions suggest that glycolate binds to the active site of the reduced enzyme, and that DCIP also has affinity for the oxidized enzyme. Glycolate oxidase belongs to a family of l-2-hydroxy-acid-oxidizing flavoenzymes, with strongly conserved active-site residues. A comparison of some of the present results with studies dealing with other family members suggests that residues outside the active site influence the binding of a number of ligands, in particular sulfite.  相似文献   

19.
刘拥海  俞乐 《广西植物》2004,24(2):184-187
分别从荞麦与大豆叶片中部分纯化了乙醇酸氧化酶 (GO ,EC1 .1 .3 .1 ) ,并研究其部分性质。结果显示荞麦与大豆叶片中GO的催化特性有明显差异 :大豆叶片中GO对乙醇酸Km值为 0 .3 1mmol/L ,对乙醛酸Km值为 1 .98mmol/L。外源草酸对GO氧化乙醇酸活性影响很小 ,但对其氧化乙醛酸活性抑制明显 ,5mmol/L草酸可抑制 44%。而荞麦叶片中GO性质有所不同 :GO对乙醇酸Km为 0 .46mmol/L ,对乙醛酸Km为 0 .85mmol/L。草酸对荞麦GO氧化乙醇酸活性影响也很小 ,对其氧化乙醛酸活性的抑制作用明显小于大豆 ,5mmol/L草酸只抑制 2 4%。上述研究结果表明 ,荞麦GO对乙醛酸的亲和力明显强于大豆 ,并且草酸对其GO氧化乙醛酸活性影响较小。因此相对于大豆而言 ,GO可能在荞麦叶片草酸合成中起重要作用。  相似文献   

20.
Glyoxylate detoxification is an important function of human peroxisomes. Glyoxylate is a highly reactive molecule, generated in the intermediary metabolism of glycine, hydroxyproline and glycolate mainly. Glyoxylate accumulation in the cytosol is readily transformed by lactate dehydrogenase into oxalate, a dicarboxylic acid that cannot be metabolized by mammals and forms tissue-damaging calcium oxalate crystals. Alanine-glyoxylate aminotransferase, a peroxisomal enzyme in humans, converts glyoxylate into glycine, playing a central role in glyoxylate detoxification. Cytosolic and mitochondrial glyoxylate reductase also contributes to limit oxalate production from glyoxylate. Mitochondrial hydroxyoxoglutarate aldolase is an important enzyme of hydroxyproline metabolism. Genetic defect of any of these enzymes of glyoxylate metabolism results in primary hyperoxalurias, severe human diseases in which toxic levels of oxalate are produced by the liver, resulting in progressive renal damage. Significant advances in the pathophysiology of primary hyperoxalurias have led to better diagnosis and treatment of these patients, but current treatment relies mainly on organ transplantation. It is reasonable to expect that recent advances in the understanding of the molecular mechanisms of disease will result into better targeted therapeutic options in the future. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号