首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common α and a hormone specific β subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the α and β subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (α, FSHβ and hCGβ) asparagine-linked (N-linked) oligosaccharides. CGβ subunit is distinguished among the β subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure–function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   

2.
Cultured skin fibroblasts derived from Nubian goats deficient in lysosomal β-mannosidase, which had previously been shown to accumulate storage oligosaccharides with the structures Manβ4GlcNAcβ4GlcNAc and Manβ4GlcNAc (in the ratio of 2.7:1) were evaluated for their ability to catabolize exogenous [3H]GlcN-labelled glycoproteins isolated from the secretions of cultured goat or human fibroblasts. Regardless of the source of exogenous labelled glycoprotein, affected goat fibroblasts took up the labelled glycoprotein from the culture medium and subsequently accumulated the same major labelled oligosaccharide, identified as Manβ4GlcNAcβ4GlcNAc; no such oligosaccharide accumulated in normal goat fibroblasts under the same conditions. Tunicamycin-treated affected fibroblasts also took up labelled exogenous glycoprotein and accumulated labelled storage trisaccharide, further suggesting the direct accumulation of storage trisaccharide from impaired glycoprotein-associated oligosaccharide catabolism. Treatment of metabolically labelled affected fibroblasts with leupeptin, an inhibitor of lysosomal cathepsins, resulted in the 2- to 6-fold inhibition of trisaccharide accumulation, while having little effect on the uptake of [3H]GlcN or the accumulation of labelled disaccharide. The results are most consistent with the presence of two endoglycosidases, an endo-β-N-acetylglucosaminidase and an endo-aspartylglucosaminidase, in goat fibroblasts. These two activities, rather than heterogeneous core oligosaccharide structures, are responsible for the ultimate accumulation of storage oligosaccharides with one and two GlcNAc residues at their reducing terminus.  相似文献   

3.
Cell-free preparations from Tetrahymena pyriformis catalyze the incorporation of glucose from UDP-glucose into a glucolipid having properties which are identical to those of other dolichyl phosphoryl sugar derivatives. Kinetic and other experiments have provided evidence that this glucolipid serves as glucose donor for two other types of glucosylated substances, one of which has been tentatively identified as an oligosaccharide lipid and the other a glycoprotein or glycoproteins. In addition, the partially purified glucolipid served as a glucosyl donor to these cell components, suggesting that in this protozoan, at least part of the glycoprotein is synthesized by reactions involving lipid-linked sugars in a manner analogous to that which has been observed in glycoprotein synthesis in mammalian cells.  相似文献   

4.
Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family.  相似文献   

5.
  • 1.1. The structure of carbohydrate chains in the low and high molecular weight mucus glycoprotein forms from submandibular-sublingual saliva of individuals with blood group B was investigated.
  • 2.2. Alkaline borohydride reductive cleavage of the glycoproteins yielded in each case a population of neutral (55%) and acidic (45%) oligosaccharide alditols ranging in size from 3 to 16 sugar units.
  • 3.3. The predominant neutral oligosaccharides in both glycoprotein forms consisted of 16 and 15 sugar units arranged in triantennary fashion, and carried blood group B and I antigenic determinants.
  • 4.4. Three of the oligosaccharides in each glycoprotein contained sialic acid and ranged in size from 3 to 12 sugar units. In two oligosaccharides sialic acid was linked to C3 of galactose and in one to C6 of N-acetylgalactosamine. The sulfated oligosaccharide in both glycoproteins was identified as a pentasaccharide with the sulfate ester group at C6 of N-acetylglucosamine.
  • 5.5. The results demonstrate that contrary to the earlier view the low and high molecular weight mucus glycoprotein forms of human saliva contain identical carbohydrate chains.
  相似文献   

6.
Pooled and alkylated α1-acid glycoprotein was fractionated on a Con A-Sepharose column into two fractions : Con A-non reactive and Con A-reactive. The carbohydrate moiety from the α1-acid glycoprotein Con A-reactive variant, obtained by hydrazinolysis and quantitative re-N-acetylation, contains only identical two-branched oligosaccharide chains. From the present work on α1-acid glycoprotein and from previous studies on α1-fetoprotein, one can assume that glycoprotein glycosylation occurs uniformly along each polypeptide chain giving it identical oligosaccharide units at each glycosylation site.  相似文献   

7.
The transport and accumulation of phytohemagglutinin in developing bean (Phaseolus vulgaris L.) cotyledons is accompanied by the transient presence of N-acetylglucosamine (GlcNAc) residues on the oligosaccharide sidechains of this glycoprotein. These peripheral GlcNAc residues can be distinguished from those in the chitobiose portion of the oligosaccharide sidechains by their sensitivity to removal by the exoglycosidase β-N-acetylglucosaminidase. GlcNAc residues sensitive to removal by β-N-acetylglucosaminidase are present not only on phytohemagglutinin, but also on other newly synthesized proteins. The enzyme UDPGlcNAc:glycoprotein GlcNAc-transferase which transfers GlcNAc residues to glycoproteins was first described by Davies and Delmer (Plant Physiol 1981 68: 284-291). The data presented here show that this enzyme is associated with the Golgi complex of developing cotyledons.  相似文献   

8.
Methylation analysis of human transcortin showed that this glycoprotein contains N-glycosidically linked oligosaccharide chains of N-acetyllactosamine type, most of the chains being biantennary and others tri- and/or tetraantennary. The carbohydrate chains of transcortin are also heterogenous with respect to the content of fucose and the position of the glycosidic linkages.  相似文献   

9.
This report presents evidence that enzymes present in crude extracts prepared from developing cotyledons of Phaseolus vulgaris can catalyze the transfer of radioactivity from UDP-N-[14C]acetylglucosamine into a chitobiosyl-lipid, lipid-oligosaccharide, and glycoprotein. Kinetic evidence supports the concept that the N-acetylglucosamine-containing lipids are precursors to the glycoprotein. Evidence is also presented which shows an interaction between GDP-mannose and UDP-N-acetylglucosamine when used as substrates for the synthesis of lipid-oligosaccharide and glycoprotein. Kinetic evidence, as well as isolation and characterization of the oligosaccharides released from lipid by mild acid hydrolyses, support the conclusion that mannose and N-acetylglucosamine are contained in the same oligosaccharide and that N-acetylglucosamine is present at the reducing end of the oligosaccharide. Ninety-eight per cent of the radioactivity which is incorporated from UDP-N-[14C]acetylglucosamine into the insoluble residue is solubilized by protease treatment. The glycopeptide released is quite similar in size and composition to the glycopeptide released by proteolytic digestion of vicilin, the major storage protein of Phaseolus vulgaris.  相似文献   

10.
We have carried out detailed structural studies of the glycopeptides of glycoprotein gD of herpes simplex virus types 1 and 2. We first examined and compared the number of N-asparagine-linked oligosaccharides present in each glycoprotein. We found that treatment of either pgD-1 or pgD-2 with endo-β-N-acetylglucosaminidase H (Endo H) generated three polypeptides which migrated more rapidly than pgD on gradient sodium dodecyl sulfate-polyacrylamide gels. Two of the faster-migrating polypeptides were labeled with [3H]mannose, suggesting that both pgD-1 and pgD-2 contained three N-asparagine-linked oligosaccharides. Second, we characterized the [3H]mannose-labeled tryptic peptides of pgD-1 and pgD-2. We found that both glycoproteins contained three tryptic glycopeptides, termed glycopeptides 1, 2, and 3. Gel filtration studies indicated that the molecular weights of these three peptides were approximately 10,000, 3,900, and 1,800, respectively, for both pgD-1 and pgD-2. Three methods were employed to determine the size of the attached oligosaccharides. First, the [3H]mannose-labeled glycopeptides were treated with Endo H, and the released oligosaccharide was chromatographed on Bio-Gel P6. The size of this molecule was estimated to be approximately 1,200 daltons. Second, Endo H treatment of [35S]methionine-labeled glycopeptide 2 reduced the molecular size of this peptide from approximately 3,900 to approximately 2,400 daltons. Third, glycopeptide 2 isolated from the gD-like molecule formed in the presence of tunicamycin was approximately 2,200 daltons. From these experiments, the size of each N-asparagine-linked oligosaccharide was estimated to be approximately 1,400 to 1,600 daltons. Our experiments indicated that glycopeptides 2 and 3 each contained one N-asparagine-linked oligosaccharide chain. Although glycopeptide 1 was large enough to accommodate more than one oligosaccharide chain, the experiments with Endo H treatment of the glycoprotein indicated that there were only three N-asparagine-linked oligosaccharides present in pgD-1 and pgD-2. Further studies of the tryptic glycopeptides by reverse-phase high-performance liquid chromatography indicated that all of the glycopeptides were hydrophobic in nature. In the case of glycopeptide 2, we observed that when the carbohydrate was not present, the hydrophobicity of the peptide increased. The properties of the tryptic glycopeptides of pgD-1 were compared with the properties predicted from the deduced amino acid sequence of gD-1. The size and amino acid composition compared favorably for glycopeptides 1 and 2. Glycopeptide 3 appeared to be somewhat smaller than would be predicted from the deduced sequence of gD-1. It appears that all three potential glycosylation sites predicted by the amino acid sequence are utilized in gD-1 and that a similar number of glycosylation sites are present in gD-2.  相似文献   

11.
Thyrotropin (TSH) and the gonadotropins; follitropin (FSH), lutropin (LH) and human chorionic gonadotropin (hCG) are a family of heterodimeric glycoprotein hormones. These hormones composed of two noncovalently linked subunits; a common alpha and a hormone specific beta subunits. Assembly of the subunits is vital to the function of these hormones. However, genetic fusion of the alpha and beta subunits of hFSH, hCG and hTSH resulted in active polypeptides. The glycoprotein hormone subunits contain one (TSH and LH) or two (alpha, FSHbeta and hCGbeta) asparagine-linked (N-linked) oligosaccharides. CGbeta subunit is distinguished among the beta subunits because of the presence of a carboxyl-terminal peptide (CTP) bearing four O-linked oligosaccharide chains. To examine the role of the oligosaccharide chains on the structure-function of glycoprotein hormones, chemical, enzymatic and site-directed mutagenesis were used. The results indicated that O-linked oligosaccharides play a minor role in receptor binding and signal transduction of the glycoprotein hormones. In contrast, the O-linked oligosaccharides are critical for in vivo half-life and bioactivity. Ligation of the CTP bearing four O-linked oligosaccharide sites to different proteins, resulted in enhancing the in vivo bioactivity and half-life of the proteins. The N-linked oligosaccharide chains have a minor role in receptor binding of glycoprotein hormones, but they are critical for bioactivity. Moreover, glycoprotein hormones lacking N-linked oligosaccharides behave as antagonists. In conclusion, the O-linked oligosaccharides are not important for in vitro bioactivity or receptor binding, but they play an important role in the in vivo bioactivity and half-life of the glycoprotein hormones. Addition of the O-linked oligosaccharide chains to the backbone of glycoprotein hormones could be an interesting strategy for designing long acting agonists of glycoprotein hormones. On the other hand, the N-linked oligosaccharides are not important for receptor binding, but they are critical for bioactivity of glycoprotein hormones. Deletion of the N-linked oligosaccharides resulted in the development of glycoprotein hormone antagonists. In the case of hTSH, development of an antagonist may offer a novel therapeutic strategy in the treatment of thyrotoxicosis caused by Graves' disease and TSH secreting pituitary adenoma.  相似文献   

12.
Glycosylation of endogenous phosphoisoprenyl lipids and membrane-associated proteins was shown to occur in preparations of chicken embryo fibroblasts incubated with GDP[14C]mannose and UDP-N-acetylglucosamine. The two preparations used were cells released from the culture dishes by buffered saline containing EDTA and crude membranes from those cells. Both β-mannosyl-phosphoryldolichol and oligosaccharide-phosphoryl lipids with five to eight sugar residues were labelled under the conditions employed. The oligosaccharide isolated from the octasaccharide-lipid fraction was shown to be heterogeneous after an analysis of the products formed by treatment of the oligosaccharide with glycosidases. Some of the oligosaccharides appeared to contain N-acetylglucosamine at positions external to that of [14C]mannose. Lipids with oligosaccharide moieties of different structures were made by the two preparations. The results of pulse-chase experiments were consistent with the glycosylated lipids being intermediates in glycoprotein biosynthesis.  相似文献   

13.
Glycoprotein processing and glycoprotein processing inhibitors   总被引:3,自引:2,他引:1       下载免费PDF全文
Elbein AD 《Plant physiology》1988,87(2):291-295
Considerable evidence is now accumulating from both in vivo and in vitro studies that the oligosaccharide chains of the plant N-linked glycoproteins undergo modification or processing reactions after the oligosaccharide has been transferred from its lipid-linked oligosaccharide intermediate to the protein. These processing reactions occur in the endoplasmic reticulum and Golgi apparatus of the cell and involve the removal of certain sugars and the addition of other sugars. While the processing reactions appear to be generally similar to those that occur in animal cells, there are some notable differences, such as the addition of a β-linked xylose to many of the plant glycoproteins. It will be interesting to determine the exact sequence of these reactions and how they are regulated in the cell. Recently, some very useful inhibitors have become available that act on the glycosidases that catalyze the removal of glucose and mannose. These inhibitors cause the accumulation of aberrant oligosaccharide chains on the glycoproteins. Such unusual glycoproteins should be valuable tools for studies on the role of oligosaccharide in glycoprotein function.  相似文献   

14.
Oligosaccharides of the glycoprotein of rabies virus.   总被引:4,自引:3,他引:1       下载免费PDF全文
The number of oligosaccharide side chains on rabies virus glycoprotein (G-protein) was investigated. Analysis of glycopeptides obtained by protease digestion of desialated G-protein revealed three discrete glycopeptides. Comparison of the protease digestion products from desialated and from untreated G-protein indicated a heterogeneity among the glycopeptides in the sialic acid content. Two major tryptic glycopeptides were isolated from desialated rabies virus G-protein and analyzed after protease digestion; one contained two oligosaccharide side chains and the other contained a single oligosaccharide side chain.  相似文献   

15.
An extracellular mucous glycoprotein has been isolated from the hard coral Acropora formosa. The glycoprotein contains sulfated oligosaccharide side chains attached through O-glycosidic linkages to serine and threonine, the principal amino acids (77%) in the polypeptide. The oligosaccharide side chains consist of D-arabinose, D-mannose, and N-acetyl-D-glucosamine with smaller amounts of D-galactose, L-fucose, and N-acetyl-D-galactosamine, but no sialic or uronic acids. Alkaline borohydride reductive cleavage resulted in a mixture of oligosaccharide alditols. Six oligosaccharides were purified by high performance liquid chromatography. The structures of these oligosaccharides, which do not resemble those of any other glycoprotein so far examined, were determined by a combination of gas chromatography/mass spectrometry analysis of methylation products and NMR spectroscopy. All oligosaccharides contain a reducing terminal mannitol residue with N-acetylglucosamine linked to carbon 2, 4, or 6 of the mannitol. There is no evidence for linkage of N-acetylglucosamine to any other glycoses in the glycoprotein. Galactose was detected in two oligosaccharides linked to the 4-position of mannitol. Arabinose (Ara) was found in only one oligosaccharide. This was probably due to hydrolysis of the labile arabino-furanoside linkages. Evidence is presented which indicates the arabinose occurs primarily at the terminal position of oligosaccharide side chains. The structures of the oligosaccharides isolated from the glycoprotein were: (Formula: see text).  相似文献   

16.
Labeling of released asparagine-linked (N-linked) oligosaccharides from glycoproteins is commonly performed to aid in the separation and detection of the oligosaccharide. Of the many available oligosaccharide labels, 2-amino benzamide (2-AB) is a popular choice for providing a fluorescent product. The derivatization conditions can potentially lead to oligosaccharide desialylation. This work evaluated the extent of sialic acid loss during 2-AB labeling of N-linked oligosaccharides released from bovine fetuin, polyclonal human serum immunoglobulin G (IgG), and human α1-acid glycoprotein (AGP) as well as of sialylated oligosaccharide reference standards and found that for more highly sialylated oligosaccharides the loss is greater than the <2% value commonly cited. Manufacturers of glycoprotein biotherapeutics need to produce products with a consistent state of sialylation and, therefore, require an accurate assessment of glycoprotein sialylation.  相似文献   

17.
Proteins entering the secretory pathway may be glycosylated upon transfer of an oligosaccharide (Glc3Man9GlcNAc2) from a dolichol-P-P derivative to nascent polypeptide chains in the lumen of the endoplasmic reticulum (ER). Oligosaccharides are then deglucosylated by glucosidases I and II (GII). Also in the ER, glycoproteins acquire their final tertiary structures, and species that fail to fold properly are retained and eventually degraded in the proteasome. It has been proposed that in mammalian cells the monoglucosylated oligosaccharides generated either by partial deglucosylation of the transferred compound or by reglucosylation of glucose-free oligosaccharides by the UDP-Glc:glycoprotein glucosyltransferase (GT) are recognized by ER resident lectins (calnexin and/or calreticulin). GT is a sensor of glycoprotein conformation as it only glucosylates misfolded species. The lectin-monoglucosylated oligosaccharide interaction would retain glycoproteins in the ER until correctly folded, and also facilitate their acquisition of proper tertiary structures by preventing aggregation. GII would liberate glycoproteins from the calnexin/calreticulin anchor, but species not properly folded would be reglucosylated by GT, and so continue to be retained by the lectins. Only when the protein becomes properly folded would it cease to be retained by the lectins. This review presents evidence suggesting that a similar quality control mechanism of glycoprotein folding is operative in Schizosaccharomyces pombe and that the mechanism in Saccharomyces cerevisiae probably differs substantially from that occurring in mammalian and Sch. pombe cells.  相似文献   

18.
Synthesis and processing of cellulase from ripening avocado fruit   总被引:7,自引:3,他引:4       下载免费PDF全文
The biosynthesis and processing of cellulase from ripening avocado fruit was studied. The mature protein is a glycoprotein, as judged by concanavalin A binding, with a molecular weight of 54,200. Upon complete deglycosylation by treatment with trifluoromethane sulfonic acid the mature protein has a molecular weight of 52,800 whereas the immunoprecipitated in vitro translation product has a molecular weight of 54,000. This result indicates that cellulase is synthesized as a large molecular weight precursor, which presumably possesses a short-lived signal peptide. A membrane-associated and heavily glycosylated form of the protein was also identified. This putative secretory precursor was enzymically active and the carbohydrate side chains were sensitive to endoglycosidase H cleavage. Results of partial endoglycosidase H digestion suggest that this precursor form of the mature glycoprotein possesses two high-mannose oligosaccharide side chains. The oligosaccharide chains of the mature protein were insensitive to endoglycosidase H cleavage, indicating that transport of the membrane-associated cellulase to the cell wall was accompanied by modification of the oligosaccharide side chains. The presence of a large pool of endoglycosidase H-sensitive membrane-associated cellulase (relative to an endoglycosidase H-insensitive form) suggest that transit of this protein through the Golgi is rapid relative to transit through the endoplasmic reticulum.  相似文献   

19.
The particulate enzyme from pig aorta catalyzed the transfer of glucose from UDP-glucose into glucosyl-phosphoryl-dolichol, into lipid-linked oligosaccharides, and into glycoprotein. Radioactive lipid-linked oligosaccharides were prepared by incubating the extracts with GDP-[14C]mannose and UDP-[3H]glucose. When the labeled oligosaccharides were run on Bio-Gel P-4, the two different labels did not exactly coincide; the 3H peak eluted slightly earlier indicating that it was of higher molecular weight than the 14C material, but there was considerable overlap. The purified oligosaccharide(s) contained glucose, mannose, and N-acetylglucosamine but the ratios of these sugars varied from one enzyme preparation to another, probably depending on the endogenous oligosaccaride-lipids present in the microsomal preparation. Treatment of the [3H]glucose-labeled oligosaccharide with α-mannosidase gave rise to a 3H-labeled oligosaccharide which moved somewhat faster on Bio-Gel P-4 than the original oligosaccharide, suggesting it had lost one or two sugar residues. These data indicate that mannose and glucose are in the same oligosaccharide. The antibiotic, amphomycin, inhibited the transfer of glucose from UDP-glucose into the lipid-linked saccharides. However the synthesis of glucosyl-phosphoryl-dolichol was much more sensitive then was the synthesis of lipid-linked oligosaccharides. The glucose-labeled oligosaccharide produced in the absence of amphomycin was of high molecular weight based on paper chromatography. But in the presence of partially inhibitory concentrations of antibiotic, the oligosaccharide migrated more rapidly on paper chromatograms. However, amphomycin had no effect on the synthesis of glucosyl-ceramide by the aorta extracts. In fact, the antibiotic may stimulate glucosyl-ceramide by making more of the substrate, UDP-glucose, available for synthesis of this lipid.  相似文献   

20.
N-acetylglucosaminyltransferase-V (GnT-V or MGAT5) catalyzes the formation of an N-glycan β1,6-GlcNAc branch on selective target proteins in the Golgi apparatus and is involved in cancer malignancy and autoimmune disease etiology. Several three-dimensional structures of GnT-V were recently solved, and the recognition mechanism of the oligosaccharide substrate was clarified. However, it is still unclear how GnT-V selectively acts on glycoprotein substrates. In this study, we focused on an uncharacterized domain at the N-terminal side of the luminal region (N domain) of GnT-V, which was previously identified in a crystal structure, and aimed to reveal its role in GnT-V action. Using lectin blotting and fluorescence assisted cell sorting analysis, we found that a GnT-VΔN mutant lacking the N domain showed impaired biosynthetic activity in cells, indicating that the N domain is required for efficient glycosylation. To clarify this mechanism, we measured the in vitro activity of purified GnT-VΔN toward various kinds of substrates (oligosaccharide, glycohexapeptide, and glycoprotein) using HPLC and a UDP-Glo assay. Surprisingly, GnT-VΔN showed substantially reduced activity toward the glycoprotein substrates, whereas it almost fully maintained its activity toward the oligosaccharides and the glycopeptide substrates. Finally, docking models of GnT-V with substrate glycoproteins suggested that the N domain could interact with the substrate polypeptide directly. Our findings suggest that the N domain of GnT-V plays a critical role in the recognition of glycoprotein substrates, providing new insights into the mechanism of substrate-selective biosynthesis of N-glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号