首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the enzymatic formation of S-adenosylmethionine in extracts of a variety of normal and oncogenically-transformed human and rat cell lines which differ in their ability to grow in medium in which methionine is replaced by its immediate precursor homocysteine. We have localized the bulk of the S-adenosylmethionine synthetase activity to the post-mitochondrial supernatant. We show that in all cell lines a single kinetic species exists in a dialyzed extract with a Km for methionine of about 3-12 microM. In selected lines we have demonstrated a requirement for Mg2+ in addition to that needed to form the Mg X ATP complex for enzyme activity and have shown that the enzyme can be regulated by product feedback inhibition. Because we detect no differences in the enzymatic ability of these cell extracts to utilize methionine for S-adenosylmethionine formation in vitro, we suggest that the failure of oncogenically-transformed cell lines to grow in homocysteine medium may result from the decreased methionine pools in these cells or from the loss of ability of these cells to properly metabolize homocysteine, adenosine, or their cellular product S-adenosylhomocysteine.  相似文献   

2.
Homocysteine-dependent transmethylases utilizing 5-methyltetrahydropteroylglutamic acid and S-adenosylmethionine as methyl donors have been examined using ammonium sulphate fractions prepared from isolated mitochondria of pea cotyledons. Substantial levels of a 5-rnethyltetrahydropteroylglutamate transmethylase were detected, the catalytic properties of this enzyme being found similar to those of a previously reported enzyme present in cotyledon extracts. The mitochondrial 5-CH3-H4PteGlu transmethylase had an apparent Km of 25 μM for the methyl donor, was saturated with homocysteine at 1 mM and was inhibited 50% by l-methionine at 2.5 mM. At similar concentrations of methyl donor the mitochondrial S-adenosylmethionine methyltransferase was not saturated. Mitochondrial preparations were found capable of synthesizing substantial amounts of S-adenosylmethionine but lacked ability to form S-methylmethionine. Significant levels of β-cystathionase, cystathionine-γ-synthase, l-homoserine transacetylase and l-homoserine transsuccinylase were detected in the isolated mitochondria. The activity of the enzymes of homocysteine biosynthesis was not affected by l-methionine in vitro. It is concluded that pea mitochondria have ability to catalyze the synthesis of methionine de novo.  相似文献   

3.
Assay for S-adenosylmethionine: methionine methyltransferase   总被引:1,自引:0,他引:1  
A quantitative assay for S-adenosylmethionine: methionine methyltransferase in phosphate buffer extracts has been developed. This enzyme catalyzes the biosynthesis of S-methylmethionine from methionine and S-adenosylmethionine. The radioactively labeled product, S-methylmethionine, is first separated from the radioactively labeled substrate, l-methionine, by means of ion-exchange chromatography. Once separated thusly, the amount present can then be directly determined by the use of a liquid scintillation spectrometer.  相似文献   

4.
Although many lines of malignant and transformed cells are unable to grow in folate- and cobalamin-supplemented medium in which methionine is replaced by homocysteine its immediate metabolic precursor, rare cells from these lines regained the normal ability to grow under these conditions. Six revertant lines, one from Walker-256 rat breast carcinoma cells and five from SV40-transformed human fibroblasts, have been characterized with regard to growth and three measures of methionine biosynthetic capacity: methionine synthetase and methylenetetrahydrofolate reductase activities in cell extracts, and uptake of label from [5-14C]methyltetrahydrofolate by intact cells. When all three measures of methionine biosynthetic capacity were considered, two revertants isolated from SV40-transformed cells had regained the ability to grow like normal cells in homocysteine medium without substantial changes in these measures. Increased methionine biosynthesis thus is not a prerequisite to reversion of the methionine auxotrophy present in the transformed parental lines.  相似文献   

5.
Mudd SH  Datko AH 《Plant physiology》1990,93(2):623-630
The metabolism of S-methylmethionine has been studied in cultures of plants of Lemna paucicostata and of cells of carrot (Daucus carota) and soybean (Glycine max). In each system, radiolabeled S-methylmethionine was rapidly formed from labeled l-methionine, consistent with the action of S-adenosyl-l-methionine:methionine S-methyltransferase, an enzyme which was demonstrated during these studies in Lemna homogenates. In Lemna plants and carrot cells radiolabel disappeared rapidly from S-methylmethionine during chase incubations in nonradioactive media. The results of pulse-chase experiments with Lemna strongly suggest that administered radiolabeled S-methylmethionine is metabolized initially to soluble methionine, then to the variety of compounds formed from soluble methionine. An enzyme catalyzing the transfer of a methyl group from S-methylmethionine to homocysteine to form methionine was demonstrated in homogenates of Lemna. The net result of these reactions, together with the hydrolysis of S-adenosylhomocysteine to homocysteine and adenosine, is to convert S-adenosylmethionine to methionine and adenosine. A physiological advantage is postulated for this sequence in that it provides the plant with a means of sustaining the pool of soluble methionine even when overshoot occurs in the conversion of soluble methionine to S-adenosylmethionine. The facts that the pool of soluble methionine is normally very small relative to the flux into S-adenosylmethionine and that the demand for the latter compound may change very markedly under different growth conditions make it plausible that such overshoot may occur unless the rate of synthesis of S-adenosylmethionine is regulated with exquisite precision. The metabolic cost of this apparent safeguard is the consumption of ATP. This S-methylmethionine cycle may well function in plants other than Lemna, but further substantiating evidence is neeeded.  相似文献   

6.
Two methionine biosynthetic enzymes and the methionine adenosyltransferase are repressed in Saccharomyces cerevisiae when grown under conditions where the intracellular levels of S-adenosylmethionine are high. The nature of the co-repressor molecule of this repression was investigated by following the intracellular levels of methionine, S-adenosylmethionine, and S-adenosylhomocysteine, as well as enzyme activities, after growth under various conditions. Under all of the conditions found to repress these enzymes, there is an accompanying induction of the S-adenosylmethionine-homocysteine methyltransferase which suggests that this enzyme may play a key role in the regulation of S-adenosylmethionine and methionine balance and synthesis. S-methylmethionine also induces the methyltransferase, but unlike S-adenosylmethionine, it does not repress the methionine adenosyltransferase or other methionine biosynthetic enzymes tested.  相似文献   

7.
Folic acid and the methylation of homocysteine by Bacillus subtilis   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Cell-free extracts of Bacillus subtilis synthesize methionine from serine and homocysteine without added folate. The endogenous folate may be replaced by tetrahydropteroyltriglutamate or an extract of heated Escherichia coli for the overall C1 transfer, but tetrahydropteroylmonoglutamate is relatively inactive. 2. Extracts of B. subtilis contain serine transhydroxymethylase and 5,10-methylenetetrahydrofolate reductase, which are non-specific with respect to the glutamate content of the folate substrates. Methyl transfer to homocysteine requires a polyglutamate folate as methyl donor. These properties are not affected by growth of the organism with added vitamin B12. 3. The synthesis of methionine from 5-methyltetrahydropteroyltriglutamate and homocysteine has the characteristics of the cobalamin-independent reaction of E. coli. No evidence for a cobalamin-dependent transmethylation was obtained. 4. S-Adenosylmethionine was not a significant precursor of the methyl group of methionine with cell-free extracts, neither was S-adenosylmethionine generated by methylation of S-adenosylhomocysteine by 5-methyltetrahydrofolate. 5. A procedure for the isolation and analysis of folic acid derivatives from natural sources is described. 6. The folates isolated from lysozyme extracts of B. subtilis are sensitive to folic acid conjugase. One has been identified as 5-formyltetrahydropteroyltriglutamate; the other is possibly a diglutamate folate. 7. A sequence is proposed for methionine biosynthesis in B. subtilis in which methyl groups are generated from serine and transferred to homocysteine by means of a cobalamin-independent pathway mediated by conjugated folate coenzymes.  相似文献   

8.
A vitamin B12-dependent N5-methyltetrahydrofoIate-homocysteine methyltransferase was found in cell-free extracts of Corynebacterium simplex ATCC 6946 grown aerobically in a medium containing hydrocarbon as a sole carbon source and the enzyme was partially purified. Absolute requirements for S-adenosylmethionine and an appropriate reducing system were observed for the transmethylation from N5-methyltetrahydrofolate. The same preparation catalyzed also the formation of methionine from homocysteine and methyl-B12 under both aerobic and anaerobic conditions. The concentration of cobalt ion in the growth medium had a pronounced effect on the intracellular vitamin B12 level and the activity of the vitamin-dependent methionine-synthesizing system in the bacterium. The relationship between the methionine synthesis and the methyl branched-chain fatty acid formation was discussed.  相似文献   

9.
Inhalation of nitrous oxide oxidises cobalamin and, in turn, inactivates methionine synthetase which forms methionine from homocysteine and which requires cob[I]alamin as a co-factor. This study was planned to determine the effect of virtual cessation of methionine synthesis via a cobalamn-dependeent pathway, on tissue levels of methionine, S-adenosylmethionine and on related enzymes. The level of methionine in liver fell initially after exposure to N2O but was restored to pre-N2O levels after 6 days despite continuing N2O exposure. Brain methionine fell within 12 h of N2O exposure but the fall was not significant. The restoration of methionine levels is accompanied by an increase in activity of betaine homoysteine methyltransferase in liver but this enzyme was not detected in brain. The activity of methionine synthetase remained very low in both liver and brain as long as N2O inhalation was continued. There was an initial rise in liver S-adenosyl-methionine levels followed by a steady fall to 40% of its initial level after 11 days of N2O exposure. However, there was no change in the level of S-adenosylmethionine in brain during this period. The data indicate that either brain meets its requirement by increased methionine uptake from plasma or that there are alternate pathways in brain for methionine synthesis other than those requiring a cobalamin coenzyme.  相似文献   

10.
The possibility that dimethyl selenide production depletes liver S-adenosylmethionine was explored as a biochemical basis for selenite toxicity. Toxic doses of selenite (25 nmol/ g body weight) were found to rapidly decrease mouse liver S-adenosylmethionine and increase S-adenosylhomocysteine, indicative of an increased rate of transmethylation. However, S-adenosylmethionine levels remained depressed beyond the time when dimethyl selenide synthesis ceased, suggesting that selenite inactivated methionine adenosyltransferase. This was found to be the case in vivo by measuring the effect of graded doses of selenite on the conversion of the methionine analog, ethionine, to S-adenosylethionine. In vitro studies also indicated inactivation of this enzyme by selenite. Liver homogenates from mice injected with 25 nmol of selenite/g, as above, were found to have less than 50% of the methionine adenosyltransferase activity of saline-injected controls.  相似文献   

11.
Folate catabolism involves cleavage of the C9-N10 bond to form p-aminobenzoylgluamate (PABG) and pterin. PABG is then acetylated by human arylamine N-acetyltransferase 1 (NAT1) before excretion in the urine. Mice null for the murine NAT1 homolog (Nat2) show several phenotypes consistent with altered folate homeostasis. However, the exact role of Nat2 in the folate pathway in vivo has not been reported. Here, we examined the effects of Nat2 deletion in male and female mice on the tissue levels of 5-methyl-tetrahydrofolate and the methionine-S-adenosylmethionine cycle. We found significant gender differences in hepatic and renal homocysteine, S-adenosylmethionine and methionine levels consistent with a more active methionine-S-adenosylmethionine cycle in female tissues. In addition, methionine levels were significantly higher in female liver and kidney. PABG was higher in female liver tissue but lower in kidney compared to male tissues. In addition, qPCR of mRNA extracted from liver tissue suggested a significantly lower level of Nat2 expression in female animals. Deletion of Nat2 affected liver 5- methyl-tetrahydrofolate in female mice but had little effect on other components of the methionine-S-adenosylmethionine cycle. No N-acetyl-PABG was observed in any tissues in Nat2 null mice, consistent with the role of Nat2 in PABG acetylation. Surprisingly, tissue PABG levels were similar between wild type and Nat2 null mice. These results show that Nat2 is not required to maintain tissue PABG homeostasis in vivo under normal conditions.  相似文献   

12.
Propylamine transferases in chinese cabbage leaves   总被引:2,自引:1,他引:1       下载免费PDF全文
We have found spermidine synthase and spermine synthase activities in extracts of leaves of Chinese cabbage (Brassica pekinensis var. Pak Choy) and have developed an assay of the former in crude extracts. The method is based on the transfer of the propylamine moiety of decarboxylated S-adenosylmethionine to labeled putrescine, followed by ion-exchange separation of the labeled amine substrate and product, which are then converted to the 5-dimethylamino-1-napthalene sulfonyl (dansyl) derivatives and further purified and identified by thin layer chromatography. The specific radioactivity of putrescine present in the reaction mixture is determined, as is the radioactivity present in dansyl spermidine. The enzyme is also present in extracts of spinach leaves.

Spermidine synthase has been purified about 160-fold from Chinese cabbage leaves. After partial purification, a rapid coupled enzymic assay has been used to study various properties of the enzyme. The plant enzyme shows maximum activity at pH 8.8 in glycine-NaOH buffer and has a molecular weight of 81,000. The Km values for decarboxylated S-adenosylmethionine and putrescine are 6.7 and 32 micromolar, respectively. The enzyme activity is inhibited strongly by dicyclohexylamine, cyclohexylamine, and S-adenosyl-3-thio-1, 8-diaminoctane. Of these, dicyclohexylamine is the most potent inhibitor with an I50 at 0.24 micromolar.

  相似文献   

13.
ThiC (4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase; EC 4.1.99.17) is a radical S-adenosylmethionine (AdoMet) enzyme that uses a [4Fe-4S]+ cluster to reductively cleave AdoMet to methionine and a 5′-deoxyadenosyl radical that initiates catalysis. In plants and bacteria, ThiC converts the purine intermediate 5-aminoimidazole ribotide to 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate, an intermediate of thiamine pyrophosphate (coenzyme B1) biosynthesis. In this study, assay conditions were implemented that consistently generated 5-fold molar excess of HMP, demonstrating that ThiC undergoes multiple turnovers. ThiC activity was improved by in situ removal of product 5′-deoxyadenosine. The activity was inhibited by AdoMet metabolites S-adenosylhomocysteine, adenosine, 5′-deoxyadenosine, S-methyl-5′-thioadenosine, methionine, and homocysteine. Neither adenosine nor S-methyl-5′-thioadenosine had been shown to inhibit radical AdoMet enzymes, suggesting that ThiC is distinct from other family members. The parameters for improved ThiC activity and turnover described here will facilitate kinetic and mechanistic analyses of ThiC.  相似文献   

14.
Methionine dependence is the inability of cells to grow when methionine (Met) is replaced by its immediate precursor homocysteine (Hcy) in the culture medium (Met?Hcy+ medium). All normal unestablished cell strains tested to date have been shown to be methionine-independent and thus grow almost as well in Met?Hcy+ medium as they do in Met+Hcy? medium. Results presented here indicate that out of 23 cell lines derived from diverse types of human tumors, 11 do not grow at all in Met?Hcy+ medium and are absolutely methionine-dependent and 3 grow only slightly in this medium. Many of the tumor cell lines tested have little else in common other than the fact that they are methionine-dependent. The high frequency of occurrence of methionine dependence in diverse types of human tumor cells indicates that methionine dependence may be an important aspect of oncogenic transformation and therapeutically exploitable.  相似文献   

15.
Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection.  相似文献   

16.
Yu YB  Adams DO  Yang SF 《Plant physiology》1979,63(3):589-590
Ethylene production in mung bean hypocotyls was greatly increased by treatment with 1-aminocyclopropane-1-carboxylic acid (ACC), which was utilized as the ethylene precursor. Unlike auxin-stimulated ethylene production, ACC-dependent ethylene production was not inhibited by aminoethoxyvinylglycine, which is known to inhibit the conversion of S-adenosylmethionine to ACC. While the conversion of methionine to ethylene requires induction by auxin, the conversion of methionine to S-adenosylmethionine and the conversion of ACC to ethylene do not. It is proposed that the conversion of S-adenosylmethionine to ACC is the rate-limiting step in the biosynthesis of ethylene, and that auxin stimulates ethylene production by inducing the synthesis of the enzyme involved in this reaction.  相似文献   

17.
Two cultured tobacco cell lines (Nicotiana tabacum L. cv Xanthi) were selected for resistance to growth inhibition by the methionine analog ethionine. Comparison of the free amino acid pool levels in these lines with those of the ethionine-sensitive parental line showed substantial accumulation of methionine (110×), threonine (18×), and lysine (5×). In vitro enzymic analysis of lysine-sensitive aspartate kinase activity showed the resistant lines to contain 16 times that found in the sensitive line. The lysine-sensitive enzymes from both resistant and sensitive lines coeluted from DEAE-cellulose and exhibited similar Km values. Both showed identical lysine plus S-adenosylmethionine inhibition profiles suggesting that the elevated activity in the resistant lines is not due to a structural change in the lysine-sensitive enzyme but possibly to the level of its expression.  相似文献   

18.
We have previously reported that exogenous methionine inhibits production of the β-subunit of the 7S storage protein in cultured soybean cotyledons, and that this inhibition involves lack of functional mRNA for the β-subunit. Analogs of methionine were used to study this inhibition. Cycloleucine, norleucine, norvaline and S-ethylcysteine treatments prevented accumulation of the β-subunit. The effects of cycloleucine and norleucine on β-subunit synthesis might have been indirect, since these compounds inhibited growth and caused a 2- to 3-fold increase in free methionine concentration. Norvaline did not affect free methionine concentration, but it did inhibit growth. Treatment with a combination of S-ethylcysteine and aminoethoxyvinylglycine prevented appearance of the β-subunit without inhibiting growth or raising the S-adenosylmethionine concentration. Thus, accumulation of S-adenosylmethionine does not appear to mediate the effect of exogenous methionine on β-subunit production. Treatment with S-ethylcysteine raised free methionine concentration only 34%, so S-ethylcysteine was probably acting directly to inhibit β-subunit production. Measurements of free methionine concentrations in seeds of different sizes, taken from intact plants, suggested that the relatively late appearance of the β-subunit in normal soybean seed development may be due to the presence of high levels of free methionine in very young seeds.  相似文献   

19.
Cystathionine γ-synthase (CGS, EC 4.2.99.9), the first committed enzyme in methionine biosynthesis, was over-expressed in Arabidopsis thaliana by introducing in the genome of this plant the coding sequence of the Arabidopsis enzyme under the control of the cauliflower mosaic virus 35S promoter. In order to target the recombinant protein to the chloroplast, the transgene included the sequence encoding the N-terminal transit peptide of Arabidopsis CGS. CGS activity and polypeptide were increased several fold in these plants. There was a markedly increased level of soluble methionine in the leaves of the transformed plants, up to 15-fold, indicating that CGS is a rate-limiting enzyme in this metabolic pathway. In addition, the transformed plants strongly over-accumulated S-methylmethionine, but not S-adenosylmethionine, in agreement with the view that S-methylmethionine corresponds to a storage form of labile methyl groups in plants and/or plays a role in preventing S-adenosylmethionine accumulation. The same strategy was used to increase the level of cystathionine β-lyase (CBL, EC 4.4.1.8), the second committed enzyme in methionine biosynthesis, in transformed A. thaliana. Despite an increase in both CBL activity and polypeptide in transformed Arabidopsis plants over-expressing Arabidopsis CBL, there was very little change in the contents of soluble methionine and S-methylmethionine, suggesting strongly that CBL is not rate limiting in the methionine biosynthetic pathway.  相似文献   

20.
Earlier studies have shown that betaine administration may modulate the metabolism of sulfur amino acids in the liver. In this study, we determined the changes in the metabolomics of sulfur-containing substances induced by betaine in the kidney, the other major organ actively involved in the transsulfuration reactions. Male rats received betaine (1 %) in drinking water for 2 weeks before killing. Betaine intake did not affect betaine–homocysteine methyltransferase activity or its protein expression in the renal tissue. Expression of methionine synthase was also unchanged. However, methionine levels were increased significantly both in plasma and kidney. Renal methionine adenosyltransferase activity and S-adenosylmethionine concentrations were increased, but there were no changes in S-adenosylhomocysteine, homocysteine, cysteine levels or cystathionine β-synthase expression. γ-Glutamylcysteine synthetase expression or glutathione levels were not altered, but cysteine dioxygenase and taurine levels were decreased significantly. In contrast, betaine administration induced cysteine sulfinate decarboxylase and its metabolic product, hypotaurine. These results indicate that the metabolomics of sulfur-containing substances in the kidney is altered extensively by betaine, although the renal capacity for methionine synthesis is unresponsive to this substance unlike that of the liver. It is suggested that the increased methionine availability due to an enhancement of its uptake from plasma may account for the alterations in the metabolomics of sulfur-containing substances in the kidney. Further studies need to be conducted to clarify the physiological/pharmacological significance of these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号