首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Streptococcus mutans Ingbritt (serotype c) was found to secrete basic glucosyltranserase (sucrose: 1,6-α-D-glucan 3-α- and 6-α- glucosyltransferase). The enzyme preparation obtained by ethanol fractionation, DEAE Bio-Gel A chromatography, chromatofocusing and preparative isoelectric focusing was composed of three isozymes with slightly different isoelectric points (pI 8.1–8.4). The molecular weight was estimated to be 151 000 by SDS-polyacrylamide gel electrophoresis. The specific activity of the enzyme was 9.8 IU per mg of protein and the optimum pH was 6.5. The enzyme was activated 2.4-fold by commercial dextran T10, and had Km values of 7.1 μM for the dextran and 4.3 mM for sucrose. Glucan was de novo synthesized from sucrose by the enzyme and found to be 1,6- α-D-glucan with 17.7% of 1,3,6-branching structure by a gas-liquid chromatography-mass spectroscopy.  相似文献   

2.
An intracellular N-terminal exopeptidase isolated from cell extracts of Streptococcus durans has been purified 470-fold to homogeneity (specific activity of 12.0 μmol/min per mg). In the absence of thiol compounds, the purified aminopeptidase undergoes a slow oxidation with a 70% loss of activity, which can be restored by the addition of 2 mM β-mercaptoethanol. The purified aminopeptidase (Mr 300 000) preferred L-peptide and arylamide substrates with small nonpolar or basic side chains. SDS electrophoresis yielded a single protein band corresponding to a molecular weight of 49 400, suggesting that the native enzyme is a hexameric protein. The enzyme-catalyzed hydrolysis of L-alanyl-p-nitroanilide exhibited a bell-shaped pH dependence for log Vmax/Km(pK1 = 6.35; pK2 = 8.50) while the log Vmax versus pH profile showed only an acid limb (pK = 6.35). Methylene blue-sensitized photooxidation of the enzyme resulted in the complete loss of activity, while L-leucine, a competitive inhibitor, partially protected against this inactivation. Amino acid analysis indicated that this photooxidative loss of activity corresponded to the modification of one histidine residue per enzyme monomer. N-Ethylmaleimide (100 mM) caused a 78% reduction in enzyme activity. Treatment of the enzyme with 1.0 mM hydrogen peroxide resulted in the oxidation of two cysteine residues per enzyme monomer and caused a 70% decrease in the catalytic activity.  相似文献   

3.
Two neutrophil chemotactic factors were isolated from the culture filtrates of Streptococcus sanguis ATCC 10556 and were chemically characterized as N-terminal blocked peptides of low molecular weight. One of the factors consisted of proline, valine, methionine, isoleucine and leucine and the other of methionine, isoleucine, leucine and phenylalanine. In both factors, methionine was detected as the sole N-terminal amino acid, but the amino group was blocked. The removal of N-terminal methionine yielded several N-terminal amino acids, suggesting that S. sanguis produced several N-terminal blocked methionyl peptides, all of which could be chemotactically active.  相似文献   

4.
The cell membrane of Streptococcus sanguis contains three classes of lipid: neutral lipid, glycolipid and phospholipid. A striking difference in membrane lipid composition between cells in the exponential and in the stationary phases of growth was observed. During the exponential phase, approx. 37–45%, 14–19% and 37–45% of the lipids synthesized were found to be neutral lipid, glycolipid and phospholipid, respectively. The amount of lipid synthesized reached a maximum at the early stationary phase. The amount of phospholipid drastically declined thereafter and that of neutral lipid slightly declined. In contrast, the amount of glycolipid markedly increased and exceeded the amount of phospholipid. The phospholipid present during the exponential phase was found to be mainly phosphatidylglycerol (82–88%) and a small amount of cardiolipin (12–18%). At the stationary phase, the amount of phosphatidylglycerol greatly decreased and reached approx. 16% of that in the early stationary phase, while cardiolipin steadily increased and became the major phospholipid in the late stationary phase. The glycolipid was found to be composed of mainly mono- and diglucosyldiglycerides. At the end of the experiment (after 8 h incubation), the distribution of lipids was found to be: neutral lipid, 46%; glycolipid (monoglucosyldiglyceride, 28%; diglucosyldiglyceride, 13%) 41%; and phospholipid (phosphatidylglycerol, 3%, cardiolipin, 8%) 13%.  相似文献   

5.
Neutrophil chemotaxis is a process that is essential for the recruitment of neutrophils to an inflamed site. In the present study, we found a remarkable increase in neutrophil chemotactic activity in the lysate of red blood cells (RBC) of mice infected with murine malaria, Plasmodium yoelii. A neutrophil chemotactic factor with an apparent molecular weight of 17 kDa (IP17) was isolated from RBC by a combination of anion-exchange chromatography on DE52 and cation-exchange chromatography on Mono S. A comprehensive GenBank database search of N-terminal amino acid sequences and MALDI-TOF mass analysis of IP17 revealed that IP17 is identical to a murine homologue of ISG15/UCRP, a member of the ubiquitin family of proteins that are inducible by interferon-beta. Recombinant mouse ISG15 showed neutrophil chemotactic activity comparable to that of natural IP17. IP17 showed specific chemotactic activity forward neutrophils and activated neutrophils to induce the release of eosinophil chemotactic factors. These results suggest that the ubiquitin family protein ISG15/UCRP has novel functions in neutrophil-mediated immune mechanisms.  相似文献   

6.
Cytosine deaminase (EC 3.5.4.1) from Salmonella typhimurium has been purified 419-fold to apparent homogeneity. SDS polyacrylamide gel electrophoresis indicated that the final cytosine deaminase preparation was homogenous. The molecular weight of cytosine deaminase was determined to be approx. 230 000 containing four identical subunits with each subunit having a molecular weight of 54 000. Cytosine deaminase has a pH optimum of 7.30 to 7.50 and a temperature optimum of 45 to 50°C. Cytosine was deaminated specifically; 5-fluorocytosine was deaminated to a lesser extent. The Km and V values for cytosine were 0.74 mM and 47.16 μmole/min, respectively. As effectors of enzyme activity, PPi stimulated the deamination while metal ions and orotidine monophosphate inhibited it. The physical characteristics of cytosine deaminase lend credence to its proposed salvage role in pyrimidine metabolism as indicated previously by physiological studies (West, T.P. and O'Donovan, G.A., J. Bacteriol. (1982) 149, 1171–1174).  相似文献   

7.
An extracellular acid phosphatase secreted into the medium during growth of Tetrahymena pryiformis strain W was purified about 900-fold by (NH4)2SO4 precipitation, gel filtration and ion exchange chromatography. The purified acid phosphatase was homogenous as judged by polycrylamide gel electrophoresis and was found to be a glycoprotein. Its carbohydrate content was about 10% of the total protein content. The native enzyme has a molecular weight of 120 000 as determined by gel filtration and 61 000 as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis. The acid phosphatase thus appears to consist of two subunits of equal size. The amino acid analysis revealed a relatively high content of asparic acid, glutamic acid and leucine. The purified acid phosphatase from Tetrahymena had a rather broad substrate specificity; it hydrolyzed organic phosphates, nucleotide phosphates and hexose phosphates, but had no diesterase activity. The Km values determined with p-nitrophenyl phosphate, adenosine 5′-phosphate and glucose 6-phosphate were 3.1·10?4 M, 3.9·10?4 M and 1.6·10?3 M, respectively. The optima pH for hydrolysis of three substrates were similar (pH 4.6). Hg2+ and Fe3+ at 5 mM were inhibitory for the purified acid phosphatase, and fluoride, L-(+)-tartaric acid and molybdate also inhibited its cavity at low concentrations. The enzyme was competitively inhibited by NaF (Ki=5.6·10?4 M) and by L-(+)-tartaric acid (Ki = 8.5·10?5 M), while it was inhibited noncompetitively by molybdate Ki = 5.0·10?6 M). The extracellular acid phosphatase purified from Tetrahymena was indistinguishable from the intracellular enzyme in optimum pH, Km, thermal stability and inhibition by NaF.  相似文献   

8.
Ah-Lim T&#x;Sai  Graham Palmer 《BBA》1982,681(3):484-495
A simple, high-yield purification procedure for cytochrome b from yeast Complex III has been developed. This procedure involves solubilization using chemical modification of the lysine residues with 3,4,5,5-tetrahydrophthalic anhydride followed by hydroxyapatite column chromatography. This purified cytochrome b has a heme content of 37.0 nmol cytochrome b/mg and a molecular weight on SDS gels of 25000–26000. Amino acid analysis indicates high hydrophobicity and is very comparable to the composition deduced from the gene sequence (Nobrega, F.G. and Tzagoloff, A. (1980) J. Biol. Chem. 255, 9828–9837). The latter data indicate a molecular weight of 42000 for the polypeptide; our heme analyses thus imply the presence of two hemes per polypeptide chain. Optical and MCD spectra are typical of a low-spin b-type cytochrome. MCD-potentiometric titration indicates a one-electron carrier with a single midpoint potential of ?44 mV at pH 7.4 and 25°C. The EPR spectrum of isolated cytochrome b has only one gz signal at 3.70, indicating that the ‘strained’ heme structure (Carter, K., T'sai, A. and Palmer, G. (1981) FEBS Lett. 132, 243–246) is still maintained. No indication of antimycin binding was demonstrated either by the direct-fluorescence method or binding-precipitation method although stoichiometric binding to the parent Complex III was readily demonstrated.  相似文献   

9.
Neutrophils migrate to sites of tissue damage, where they protect the host against pathogens. Often, the cost of these neutrophil defenses is collateral damage to healthy tissues. Thus, the immune system has evolved multiple mechanisms to regulate neutrophil migration. One of these mechanisms is reverse migration — the process whereby neutrophils leave the source of inflammation. In vivo, neutrophils arrive and depart the wound simultaneously — indicating that neutrophils dynamically integrate conflicting signals to engage in forward and reverse migration. This finding is seemingly at odds with the established chemoattractant hierarchy in vitro, which places wound-derived signals at the top. Here we will discuss recent work that has uncovered key players involved in retaining and dispersing neutrophils from wounds. These findings offer the opportunity to integrate established and emerging mechanisms into a holistic model for neutrophil migration in vivo.  相似文献   

10.
From the yest Candida biodinili grown on glucose a new secondary alcohol dehydrogenase was purified 426-fold by heat treatment, column chromatography on DEAE-Sephacel, affinity chromatography on Blue Sepharose Cl-6b, and gel filtration on Sephacryl S-300. The purified enzyme was homogeneous as judged by analytical polyacrylamide gel electrophoresis. The molecular weight was found to be 150 000 by sedimentation equilibirum as well as by flitration. The enzyme appears to be composed of four identical subunits (Mr = 38000) as determined by SDS-gel electrophoresis. The enzyme catalyzes the oxidation of isopropanol to acetone in the presence of NAD+ as an electron acceptor. The Km values were found to be 0.099 mM for isopropanoi and 0.14 mM for NDA+. Besides isopropanol also other secondary alcohols like butan-2-ol, pentan-2-ol, pentan-3-ol, hexan-2-ol, cyclobutanol, cyclopentanol, and cyclohexanol served as a substrate and were oxidazed to the correponding ketones. Isopropanol seems to be the best substrate for this enzyme which we therefore call isopropanol dehydrogenase. Primary alcohols are not oxidized by the enzyme. The optimum pH for enzymatic activity in the oxidation reaction was found to be 9.0, the optimal temperature is 45°C. The isolectric point of the isopropanol dehydrogenase was found to be pH 4.9. The enzyme is inactivated by mercaptide-forming reagents and chelating agents, 2-mercaptoethanol is an inhibitor. Zinc ions appear necessary for enzyme productuion.  相似文献   

11.
The stereochemically constrained chemotactic peptide analogs, formylmethionyl-alpha-aminoisobutyryl-phenylalanine (formyl-Met-Aib-Phe-OH) and formylmethionylcycloleucinylphenylalanine (formyl-Met-Cyl-Phe-OH) are highly effective in inducing lysosomal enzyme release from rabbit neutrophils. NMR studies of the Aib2 analog in (CD3)2SO favor a folded conformation in which the Phe NH group is inaccessible to solvent. Intramolecularly hydrogen-bonded conformations involving a Met-Aib-beta-turn or a gamma-turn centered at Aib2 are considered. The results suggest that folded conformations may allow highly active interactions with the neutrophil formylpeptide receptor.  相似文献   

12.
13.
A neutrophil chemotactic factor (NCF-Di) was purified from a crude extract of Dirofilaria immitis adult worm by a combination of anion-exchange chromatography on DE52 and gel filtration on Sephacryl S-200. NCF-Di showed a single protein band by both polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. The molecular weight of NCF-Di was estimated to be 17,000 by gel filtration on Sephadex G-150, and 14,000 by SDS-PAGE. NCF-Di was an acidic protein with isoelectric point of 4.5. NCF-Di was absorbed neither to lentil lectin-Sepharose nor to concanavalin A-Sepharose. The chemotactic activity of NCF-Di was heat labile (56 C, 1 hr), but was resistant to periodate oxidation. These results suggest that NCF-Di is a simple peptide which has few or no sugar chains. These physicochemical properties of NCF-Di were compared to previously reported parasite-derived chemoattractants or purified allergen of D. immitis.  相似文献   

14.
The transport of sucrose by selected mutant and wild-type cells of Streptococcus mutans was studied using washed cocci harvested at appropriate phases of growth, incubated in the presence of fluoride and appropriately labelled substrates. The rapid sucrose uptake observed cannot be ascribed to possible extracellular formation of hexoses from sucrose and their subsequent transport, formation of intracellular glycogen-like polysaccharide, or binding of sucrose or extracellular glucans to the cocci. Rather, there are at least three discrete transport systems for sucrose, two of which are phosphoenolpyruvate-dependent phosphotransferases with relatively low apparent Km values and the other a non-phosphotransferase (non-PTS) third transport system (termed TTS) with a relatively high apparent Km. For strain 6715-13 mutant 33, the Km values are 6.25·10?5 M, 2.4·10?4 M, and 3.0·10?3 M, respectively; for strain NCTC-10449, the Km values are 7.1·10?5 M, 2.5·10?4 M and 3.3·10?3 M, respectively. The two lower Km systems could not be demonstrated in mid-log phase glucose-adapted cocci, a condition known to repress sucrose-specific phosphotransferase activity, but under these conditions the highest Km system persists. Also, a mutant devoid of sucrose-specific phosphotransferase activity fails to evidence the two high affinity (low apparent Km) systems, but still has the lowest affinity (highest Km) system. There was essentially no uptake at 4°C indicating these processes are energy dependent. The third transport system, whose nature is unknown, appears to function under conditions of sucrose abundance and rapid growth which are known to repress phosphoenolpyruvate-dependent sucrose-specific phosphotransferase activity in S. mutans. These multiple transport systems seem well-adapted to S. mutans which is faced with fluctuating supplies of sucrose in its natural habitat on the surfaces of teeth.  相似文献   

15.
The catabolic enzyme allantoinase is rapidly inactivated in cells of Pseudomonas aeruginosa when the stationary phase of growth is reached. This process is irreversible since the protein synthesis inhibitor chloramphenicol completely blocked the reappearance of allantoinase activity that is observed when allantoin is added to stationary cells. Purified allantoinase appeared to be a protein composed of four identical subunits with a molecular weight of 38 000. With antibodies raised against purified allantoinase it was found that allantoinase inactivation is accompanied by a parallel decrease in immunologically reactive material. This suggest that allantoinase inactivation is caused or followed by rapid proteolysis.  相似文献   

16.
The ‘high ammonia pathway’ enzyme glutamate dehydrogenase (NADP+) is inactivated in cells of Pseudomonas aeruginosa when the stationary phase of growth in reached. Purified glutamate dehydrogenase (NADP+) appeared to be a protein composed of six identical subunits with a molecular weight of 54 000. With antibodies raised against purified enzyme it was found that glutamate dehydrogenase (NADP+) inactivation is accompanied by a parallel decrease in immunologically reactive material. This suggests that glutamate dehydrogenase (NADP+) inactivation is caused or followed by rapid proteolysis.  相似文献   

17.
Chemotaxis of rat peritoneal cells, of which the eosinophil was the predominant migratory cell type, toward incubates of Trichinella spiralis was studied using a modified Boyden chamber. Excysted muscle larvae, preadults, and adults were incubated in a buffered medium for 20 hr at 37 C. Worms were incubated alone or with serum or spleen cells, or both, from immune and nonimmune rats. Incubates of worm stages alone possessed no chemotactic activity as compared with incubation medium as a negative control and zymosan-activated serum as a positive control. Both normal and immune sera tested alone stimulated cell migration to the same degree. Incubates of spleen cells from either normal or immunized hosts did not show chemotactic activity. Chemotaxis caused by normal and immune sera were not altered by incubation with homologous spleen cells. Addition of larva, preadults, and adult worms to sera, however, enhanced chemotactic activity over sera alone. Chemotaxis caused by larvae plus immune sera was significantly greater than that stimulated by larvae plus normal sera. This difference decreased when preadults were substituted for larvae and was not observed when adult worms were used. Reversal of the chemical gradients showed that active cell migration caused by various incubates was due to Chemotaxis.  相似文献   

18.
The effects of chemotactic stimuli on motility ability of viable Campylobacter to pass through a 0.45 µm pore size filter in viscous condition were investigated. Reference strains including C. jejuni ATCC 33291, C. coli MUMT 18407, C. lari ATCC 43675, and C. upsaliensis DMST 19055 were used. The initial numbers of artificially-inoculated viable cells per g of chicken meat were approximately 10 to 104. Constituents of mucin plus bile (1:1), varieties of amino acids, and sodium salts were added into a soft-agar-coated membrane filter and incubated at both 37 °C and 42 °C for 24 h. The drop plate method was used to determine numbers of viable Campylobacter at 6, 12, 18, and 24 h. After 6 h, constituents of mucin plus bile at the concentrations of 1, 5, and 10% demonstrated significant increases in numbers of viable cells (p < 0.05). The numbers of the organisms at 42 °C were higher than those at 37 °C. In contrast, no significant difference in cell numbers was observed by adding amino acids or sodium salts. In addition, the role of starvation on chemotactic responses was also studied. Starved cells showed lower chemotactic response than non-starved cells. This method permitted rapid detection of viable thermophilic Campylobacter.  相似文献   

19.
Schistosoma mekongi causes granulomatous lesions around eggs deposited in the liver with neutrophil-rich inflammatory reactions in the early stage of the egg laying. To define the aspects of the typical pathogenesis of S. mekongi infection, we determined the difference between soluble egg antigen (SEA) from S. mekongi and S. japonicum with a focus on chemotactic factors for neutrophils or eosinophils. Mean volume and protein amount of S. mekongi eggs was 71 and 58% of those of Schistosoma japonicum eggs, respectively. Neutrophil chemotactic activity of S. mekongi SEA was about two times higher than that of S. japonicum. In contrast, eosinophil chemotactic activity of S. mekongi SEA was about half of that of S. japonicum SEA. Molecular analysis revealed that S. mekongi SEA contains higher molecular-weight components with a lower level of glycosylation, and this is likely to be related to the intense neutrophil chemotactic activity in comparison with S. japonicum SEA. The prominent chemotactic reactivity for neutrophils is likely to be involved in the typical pathogenesis of mekongi schistosomiasis.  相似文献   

20.
An ATPase activity specifically stimulated by micromolar Ca2+ concentrations has been identified in association with rabbit neurophil membranes. These studies provide the basis of further characterization of the Ca2+-ATPase activity with regard to neutrophil function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号