首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The interaction of bleomycin A2 and Zn(II)-bleomycin A2 with the oligonucleotide (dC-dG)3 has been monitored by nuclear magnetic resonance spectroscopy. Binding of the drug to the oligonucleotide is indicated by an upfield shift of the bithiazole proton resonances consistent with partial intercalation of this group between base pairs. The effect of temperature and ionic strength on the binding of both free bleomycin and the Zn(II) complex has been studied. Consistent with earlier studies on polynucleotides, the rate of exchange between the free drug and the drug-oligonucleotide complex is rapid on the 1H NMR chemical shift time scale. Binding of the oligonucleotide induced changes in resonances assigned to protons in the metal-binding region of Zn(II)-bleomycin. Intermolecular nuclear Overhauser effect enhancements between bleomycin and the oligonucleotide have not been detected.  相似文献   

2.
The bleomycins (BLMs) are natural products that in the presence of iron and oxygen bind to and cause single-strand and double-strand cleavage of DNA. The mode(s) of binding of the FeBLMs that leads to sequence-specific cleavage at pyrimidines 3′ to guanines and chemical-specific cleavage at the C-4′ H of the deoxyribose of the pyrimidine has remained controversial. 2D NMR studies using the hydroperoxide of CoBLM (HOO-CoBLM) have demonstrated that its bithiazole tail binds by partial intercalation to duplex DNA. Studies with ZnBLM demonstrate that the bithiazole tail binds in the minor groove. Phleomycins (PLMs) are BLM analogs in which the penultimate thiazolium ring of the bithiazole tail is reduced. The disruption of planarity of this ring and the similarities between FePLM- and FeBLM-mediated DNA cleavage have led Hecht and co-workers to conclude that a partial intercalative mode of binding is not feasible. The interaction of HOO-CoPLM with d(CCAGGCCTGG)2 has therefore been investigated. Binding studies indicate a single site with a Kd of 16 µM, 100-fold greater than HOO-CoBLM for the same site. 2D NMR methods and molecular modeling using NMR-derived restraints have led to a structural model of HOO-CoPLM complexed to d(CCAGGCCTGG)2. The model reveals a partial intercalative mode of binding and the basis for sequence specificity of binding and chemical specificity of cleavage. The importance of the bithiazoles and the partial intercalative mode of binding in the double-strand cleavage of DNA is discussed.  相似文献   

3.
L M Fisher  R Kuroda  T T Sakai 《Biochemistry》1985,24(13):3199-3207
The association of the antitumor antibiotic bleomycin A2 with DNA has been investigated by employing several 2-substituted thiazole-4-carboxamides, structurally related to the cationic terminus of the drug. With a 5'-32P-labeled DNA restriction fragment from plasmid pBR322 as substrate, these compounds have been shown to inhibit bleomycin-induced DNA breakage. Analogues possessing 2'-aromatic substituents on the bithiazole ring were more potent inhibitors than those carrying 2'-aliphatic groups, e.g., the acetyl dipeptide A2. The degree of inhibition was similar at all scission sites on DNA, and inclusion of the analogues did not induce bleomycin cleavage at new sites. DNA binding of bithiazole derivatives has also been studied by two complementary topological methods. Two-dimensional gel electrophoresis using a population of DNA topoisomers and DNA relaxation experiments involving calf thymus DNA topoisomerase I and pBR322 DNA reveal that bleomycin bithiazole analogues unwind closed circular duplex DNA. The inhibition and unwinding studies together support recent NMR studies suggesting that both bleomycin A2 and synthetic bithiazole derivatives bind to DNA by an intercalative mechanism. The results are discussed in relation to the DNA breakage properties of bleomycin A2.  相似文献   

4.
An intercalation model of a complex between DNA and a bleomycin fragment (BLMF), consisting of the bithiazole core and an amide and a protonated amino substituent, is presented. The model, which shows a preference for BLMF with the protonated amine in the minor groove and the acetyl terminal inserted into either the minor and major grooves, respectively, agrees with recently obtained nmr data. The selection of sites I and II, which have the smallest unwinding of the three theoretical intercalation sites, is consistent with the experimental unwinding angle of 12°. The bithiazole moiety stacks between two base pairs of the double helix, while the protonated substituent interacts ionically with the negatively charged regions of the backbone in the minor groove of the DNA. The protonated amine also forms an intramolecular hydrogen bond with the carbonyl oxygen of the amide group on the same substituent. Analysis of drug complexes with different base-pair sequences reveal four energetically defined groups. The relative energy of the dimer duplex complexes of BLMF correlates with bleomycin's observed base-sequence specificity upon cleavage. The most stable intercalation complexes form adjacent to the bases cleaved most readily. This correlation suggests a primary connection between intercalation and cleavage. A model cleavage site based on these preliminary theoretical calculations and the experimental observations is proposed. It consists of an intercalation site in a trimer duplex. Pyrimidine(p)purine sequences are the predominant sites for intercalation, and the base adjacent to the site at the (3′) end is cleaved.  相似文献   

5.
Is the bithiazole moiety of bleomycin a classical intercalator?   总被引:1,自引:0,他引:1       下载免费PDF全文
Bleomycin is a widespread anticancerous drug, the biological activity of which having been extensively studied. Its metal ion-chelating portion has been shown to cleave DNA whereas the role of the bithiazole moiety is still questionable. In order to elucidate this problem some 2', 4-disubstituted bithiazoles structurally related to the "tripeptide S" moiety of bleomycin were synthesized and their interaction with DNA was studied using delta Tm, fluorescence, EPR and viscometry techniques. The results of delta Tm and fluorescence quenching determinations were in favour of a binding of the bithiazole part by an intercalation process. Nevertheless, the use of the spin-label probes indicated only a partial intercalation of the ring between the base-pairs. Moreover, viscometry data which clearly exhibited a slight decrease of DNA length in the presence of bithiazole derivative led to the proposal of a binding model involving a partial insertion of a thiazole ring which wedges in between the bases at a bending point of DNA.  相似文献   

6.
The bleomycins (BLMs) are a family of natural glycopeptides used clinically as antitumor agents. In the presence of required cofactors (Fe2+ and O2), BLM causes both single-stranded (ss) and double-stranded (ds) DNA damage with the latter thought to be the major source of cytotoxicity. Previous biochemical and structural studies have demonstrated that BLM can mediate ss cleavage through multiple binding modes. However, our studies have suggested that ds cleavage occurs by partial intercalation of BLM's bithiazole tail 3′ to the first cleavage site that facilitates its re-activation and re-organization to the second strand without dissociation from the DNA where the second cleavage event occurs. To test this model, a BLM A5 analog (CD-BLM) with β-cyclodextrin attached to its terminal amine was synthesized. This attachment presumably precludes binding via intercalation. Cleavage studies measuring ss:ds ratios by two independent methods were carried out. Studies using [32P]-hairpin technology harboring a single ds cleavage site reveal a ss:ds ratio of 6.7 ± 1.2:1 for CD-BLM and 3.4:1 and 3.1 ± 0.3:1 for BLM A2 and A5, respectively. In contrast with BLM A5 and A2, however, CD-BLM mediates ds-DNA cleavage through cooperative binding of a second CD-BLM molecule to effect cleavage on the second strand. Studies using the supercoiled plasmid relaxation assay revealed a ss:ds ratio of 2.8:1 for CD-BLM in comparison with 7.3:1 and 5.8:1, for BLM A2 and A5, respectively. This result in conjunction with the hairpin results suggest that multiple binding modes of a single BLM can lead to ds-DNA cleavage and that ds cleavage can occur using one or two BLM molecules. The significance of the current study to understanding BLM's action in vivo is discussed.  相似文献   

7.
Ruthenium complexes with one dipyrido[3,2-a:2′-3′-c]phenazine (dppz) ligand, e.g. [Ru(phen)2(dppz)]2+ (phen = phenanthroline), shows strong binding to double helical DNA and are well-known DNA “light-switch” molecules. We have here investigated four new [Ru(phen)2(dppz)]2+ derivatives with different bulky quaternary ammonium substituents on the dppz ligand to find relationships between molecular structure and intercalation kinetics, which is considered to be of importance for antitumor applicability. Linear dichroism spectroscopy shows that the enantiomers of the new complexes exhibit very similar binding geometries (intercalation of dppz moiety between adjacent DNA base pairs) as the enantiomers of the parent [Ru(phen)2(dppz)]2+ complex. Absorption spectra and luminescence properties provide further evidence for a final intercalative binding mode which has to be reached by threading of a bulky moiety between the strands of the DNA. Δ-enantiomers of all the new complexes show much slower association and dissociation kinetics than that of a reference complex without a cationic substituent. Kinetics were not very different whether the bulky quaternary group was derived from hexamethylene tetramine or 1,4-diazabicyclo-(2,2,2)octane (DABCO) or whether it had one or two positive charges. However, a complex in which the hexamethylene tetramine substituent is attached via a phenyl group showed a lowered association rate, in addition to an improved quantum yield of luminescence. A second positive charge on the DABCO substituent resulted in a much slower dissociation rate, suggesting that the distance from the Ru-centre and the amount of charge are both important for threading intercalation kinetics.  相似文献   

8.
The inherent ability to interact with DNA makes cationic metallo-porphyrins attractive targets as antitumor drugs. Many studies describe their interaction with DNA and the mechanism by which they induce DNA cleavage. Since porphyrins can be used as anchors for chemically reactive groups, it is possible to modify them to generate a family of compounds with specific functions. In the present work, we used chemical groups such as copper-bipyridinium (Cu-bpy), which hydrolyze phosphodiester bonds, and a porphyrin core to synthesize two novel Cu2-bpy-porphyrins. Their interactions with DNA have been characterized using classic spectroscopic methods, and their oxidative and hydrolytic reactivity toward supercoiled plasmid DNA has been studied in vitro. Our results show that Cu2-bpy-porphyrins interact with DNA via external association and intercalation and that their ability to cleave DNA and the mechanisms depends on the experimental conditions.  相似文献   

9.
The interaction of eight 2-substituted thiazole-4-carboxamides, structurally related to cationic terminus of bleomycin A2, with poly(deoxyadenylylthymidylic acid) [poly(dA-dT)] has been studied by using proton nuclear magnetic resonance and fluorescence spectroscopy. These analogues have been used as probes of the complex formed between the parent drug molecule and poly(dA-dT). Aliphatic substituents on the 2' position of 2,4'-bithiazole derivatives restrict the ability of the aromatic ring system to intercalate in the double-helical form of the polynucleotide. Absence or partial removal of the 2' substituent enhances intercalation of the bithiazole system. The cationic side chain does not appear to be involved in the stabilization of any of these complexes, although it may be necessary for their formation. A 2,4':2',4"-terthiazole derivative shows a substantial degree of intercalation which is accompanied by extensive immobilization of the cationic side chain. This suggests that insertion of the aromatic system into the nucleic acid causes the cationic side chain to be pulled in also. Monothiazole analogues do not appear to bind, indicating that at least two thiazole rings are necessary for binding or that proper spacing between the two side chains on either side of the thiazole system is important for binding. The relation of the interactions of these analogues to the biochemical and biological properties of the parent bleomycins is discussed as is the possible use of these data in the design of synthetic bleomycin derivatives having varying affinities and specificities for DNA.  相似文献   

10.
DNA intercalators that have high affinity and slow kinetics are developed for potential DNA-targeted therapeutics. Although many natural intercalators contain multiple chiral subunits, only intercalators with a single chiral unit have been quantitatively probed. Dumbbell-shaped DNA threading intercalators represent the next order of structural complexity relative to simple intercalators, and can provide significant insights into the stereoselectivity of DNA-ligand intercalation. We investigated DNA threading intercalation by binuclear ruthenium complex [μ-dppzip(phen)4Ru2]4+ (Piz). Four Piz stereoisomers are defined by the chirality of the intercalating subunit (Ru(phen)2dppz) and the distal subunit (Ru(phen)2ip), respectively, each of which can be either right-handed (Δ) or left-handed (Λ). We used optical tweezers to measure single DNA molecule elongation due to threading intercalation, revealing force-dependent DNA intercalation rates and equilibrium dissociation constants. The force spectroscopy analysis provided the zero-force DNA binding affinity, the equilibrium DNA-ligand elongation Δxeq, and the dynamic DNA structural deformations during ligand association xon and dissociation xoff. We found that Piz stereoisomers exhibit over 20-fold differences in DNA binding affinity, from a Kd of 27 ± 3 nM for (Δ,Λ)-Piz to a Kd of 622 ± 55 nM for (Λ,Δ)-Piz. The striking affinity decrease is correlated with increasing Δxeq from 0.30 ± 0.02 to 0.48 ± 0.02 nm and xon from 0.25 ± 0.01 to 0.46 ± 0.02 nm, but limited xoff changes. Notably, the affinity and threading kinetics is 10-fold enhanced for right-handed intercalating subunits, and 2- to 5-fold enhanced for left-handed distal subunits. These findings demonstrate sterically dispersed transition pathways and robust DNA structural recognition of chiral intercalators, which are critical for optimizing DNA binding affinity and kinetics.  相似文献   

11.
The influence of water-soluble cationic meso-tetra-(4?N-oxyethylpyridyl)porphyrin (H2TOEPyP4) and it’s metallocomplexes with Ni, Cu, Co, and Zn on hydrodynamic and spectral behavior of DNA solutions has been studied by UV/Vis absorption and viscosity measurement. It was shown that the presence of planar porphyrins such as H2TOEPyP4, NiTOEPyP4, and СuTOEPyP4 leads to an increase in viscosity at relatively small concentrations, and then decrease to stable values. Such behavior is explained by intercalation of these porphyrins in DNA structure because the intercalation mode involves the insertion of a planar molecule between DNA base pairs which results in a decrease in the DNA helical twist and lengthening of the DNA. Further decrease of viscosity is explained by the saturation intercalation sites and occurs outside the binding mode. But, in the case of porphyrins with axial ligands such as CoTOEPyP4 and ZnTOEPyP4, the hydrodynamic parameters decrease, which is explained by self-stacking of these porphyrins in DNA surface. This data are proved by spectral measurements. The results obtained from titration experiments were used for calculation of binding parameters: the binding constant K b and the number of binding sites per base pair n. Obtained data reveal that K b varies between 3.4 and 5.4?×?106?M?1 for a planar porphyrins, a range typical for intercalation mode interactions, and 5.6?×?105?M?1 and 1.8?×?106?M?1 for axial porphyrins. In addition, the exclusion parameter n also testifies that at intercalation, (n~2) the adjacent base pairs are removed to place the planar molecules, and for outside binders to pack on the surface needs too few places (n~0.5–1). It is apparent that the binding is somewhat stronger at intercalation. The viscometric and spectrophotometric measurements are in good agreement.  相似文献   

12.
Double-stranded DNA is targeted by bleomycin in cancer cells and ambiguity exists as to its mode of DNA binding. A conventional Raman study was performed on drug/DNA complexes in which the low frequency spectral region (560-930 cm(-1)) was examined at two temperatures (19 and 30 degrees C). At 30 degrees C, a global Raman hypochromism was observed consistent with partial intercalation of the bithiazole moiety. At 19 degrees C, Raman hypochromism (increased base pair stacking) was detected for bands associated with GC base pairs while Raman hyperchromism (base pair destacking) was evident for bands associated with AT base pairs. These results suggest that intercalation of the bithiazole moiety occurs with greater disruption of the more efficiently stacked AT base pairs at the lower temperature. Evidence for minor groove binding was indicated by an increase in the population of bands corresponding to C3' endo sugar conformations resulting from drug induced local desolvation of the DNA polymer.  相似文献   

13.
Time correlated Single Photon Counting study (TCSPC) was performed for the first time to evaluate the effect of resveratrol (RES) and genistein (GEN) at 10–100 μM and 10–150 μM respectively, in modulating the DNA conformation and the variation induced due to intercalation by the dyes, ethidium bromide (EtBr) and acridine orange (AO). It is demonstrated using UV-absorption and fluorescence spectroscopy that RES and GEN, at 50 μM and 100 μM respectively can bind to DNA resulting in significant de-intercalation of the dyes, preventing their further intercalation within DNA. Hyperchromicity with red/blue shifts in DNA when bound to dyes was reduced upon addition of RES and GEN. DNA-dependent fluorescence of EtBr and AO was quenched in the presence of RES by 87.97% and 79.13% respectively, while similar quenching effect was observed for these when interacted with GEN (85.52% and 83.85%). It is found from TCSPC analysis that the higher lifetime component or constituent of intercalated dyes (τ2, A 2) decreased with the subsequent increase in smaller component or constituent of free dye (τ1, A 1) after the interaction of drugs with the intercalated DNA. Thus these findings signify that RES and GEN can play an important role in modulating DNA intercalation, leading to the reduction in DNA-directed toxicity.  相似文献   

14.
Abstract

In the course of studies related to new molecules with intercalative properties, we have been led to design and synthesize a bithiazole derivative, namely the 2-phenyl-6- [2′-(4′-(ethoxy-carbony1)thiazoly1)] thiazolo[3,2-b] [1,2,4]triazole (PETT). Its interaction with calf thymus DNA was studied using thermal denaturation and viscometry. Our results set in evidence that PETT acts as an intercalator, giving Δ Tm, elongation and unwinding of DNA comparable to the values obtained for daunorubicin. The discrepancy between the data presented herein and those precedently obtained for bleomycin and bleomycin models provide evidence that these bithiazole derivatives interact differently with DNA.  相似文献   

15.
A series of meso-5,10,15-tris(N-methyl-4-pyridiniumyl)-20-(4-alkylamidophenyl) porphyrins were synthesized by derivatizing the amino group on the phenyl ring with the following hydrophobic groups: –C(O)C7F15, –C(O)CHCH2, C(O)CH3, –C(O)C7H15, and –C(O)C15H31. The cationic tris-pyridiumyl porphyrin core serves as a DNA binding motif and a photosensitizer to photomodify DNA molecules. The changes of the UV–Vis absorption spectra during the titration of these porphyrins with calf thymus DNA revealed a large bathochromic shift (up to 14 nm) and a hypochromicity (up to 55%) of the porphyrins Soret bands, usually considered as proof of porphyrin intercalation into DNA. Association constants (K) calculated according to the McGhee and von Hippel model, were in the range of 106–107 M−1. An increase in hydrophobicity of the substituents at the 20−meso-position produced higher binding affinity. These porphyrins caused photomodification of the supercoiled plasmid DNA when a green laser beam at 532 nm was applied. Those with higher surface activity acted more efficiently as DNA photomodifiers. The porphyrin with a perfluorinated alkyl chain (–COC7F15) at the meso-20-position inhibited the growth of gram-positive bacteria (S. aureus, or S. epidermidis). Other porphyrins exhibited moderate activity against both gram-negative and gram-positive organisms.  相似文献   

16.
The binding of 9-hydroxyellipticine to calf thymus DNA, poly[d(A-T)]2, and poly-[d(G-C)]2 has been studied in detail by means of CD, linear dichroism, resonance light scattering, and molecular dynamics. The transition moment polarizations of 9-hydroxyelliptiycine were determined in polyvinyl alcohol stretched film. Spectroscopic solution studies of the DNA/drug complex are combined with theoretical CD calculations using the final 50 ps of a series of molecular dynamics simulations as input. The spectroscopic data shows 9-hydroxyellipticine to adopt two main binding modes, one intercalative and the other a stacked binding mode involving the formation of drug oligomers in the DNA major groove. Analysis of the intercalated binding mode in poly[d(A-T)]2 suggests the 9-hydroxyellipticine hydroxyl group lies in the minor groove and hydrogen bonds to water with the pyridine ring protruding into the major groove. The stacked binding mode was examined using resonance light scattering and it was concluded that the drug was forming small oligomer stacks rather than extended aggregates. Reduced linear dichroism measurements suggested a binding geometry that precluded a minor groove binding mode where the plane of the drug makes a 45° angle with the plane of the bases. Thus it was concluded that the drug stacks in the major groove. No obvious differences in the mode of binding of 9-hydroxyellipticine were observed between different DNA sequences; however, the stacked binding mode appeared to be more favorable for calf thymus DNA and poly[d(G-C)]2 than for poly[d(A-T)]2, an observation that could be explained by the slightly greater steric hindrance of the poly[d(A-T)]2 major groove. A strong concentration dependence was observed for the two binding modes where intercalation is favored at very low drug load, with stacking interactions becoming more prominent as the drug concentration is increased. Even at DNA : drug mixing ratios of 70:1 the stacked binding mode was still important for GC-rich DNAs. © 1998 John Wiley & Sons, Inc. Biopoly 46: 127–143, 1998  相似文献   

17.
Characterization of the thermodynamics of DNA– drug interactions is a very useful part in rational drug design. Isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) and UV melting experiments have been used to analyze the multivalent (intercalation plus minor groove) binding of the antitumor antibiotic chartreusin to DNA. Using DNA UV melting studies in the presence of the ligand and the binding enthalpy determined by ITC, we determined that the binding constant for the interaction was 3.6 × 105 M–1 at 20°C, in a solution containing 18 mM Na+. The DNA–drug interaction was enthalpy driven, with a ΔHb of –7.07 kcal/mol at 20°C. Binding enthalpies were determined by ITC in the 20–35°C range and used to calculate a binding-induced change in heat capacity (ΔCp) of –391 cal/mol K. We have obtained a detailed thermodynamic profile for the interaction of this multivalent drug, which makes possible a dissection of ΔGobs into the component free energy terms. The hydrophobic transfer of the chartreusin chromophore from the solution to the DNA intercalating site is the main contributor to the free energy of binding.  相似文献   

18.
The structures of the complexes formed between 9-amino-[N-(2-dimethyl-amino)butyl]acridine-4-carboxamide and d(CG5BrUACG)2 and d(CGTACG)2 have been solved by X-ray crystallography using MAD phasing methodology and refined to a resolution of 1.6 Å. The complexes crystallised in space group C222. An asymmetric unit in the brominated complex comprises two strands of DNA, one disordered drug molecule, two cobalt (II) ions and 19 water molecules (31 in the native complex). Asymmetric units in the native complex also contain a sodium ion. The structures exhibit novel features not previously observed in crystals of DNA/drug complexes. The DNA helices stack in continuous columns with their central 4 bp adopting a B-like motif. However, despite being a palindromic sequence, the terminal GC base pairs engage in quite different interactions. At one end of the duplex there is a CpG dinucleotide overlap modified by ligand intercalation and terminal cytosine exchange between symmetry-related duplexes. A novel intercalation complex is formed involving four DNA duplexes, four ligand molecules and two pairs of base tetrads. The other end of the DNA is frayed with the terminal guanine lying in the minor groove of the next duplex in the column. The structure is stabilised by guanine N7/cobalt (II) coordination. We discuss our findings with respect to the effects of packing forces on DNA crystal structure, and the potential effects of intercalating agents on biochemical processes involving DNA quadruplexes and strand exchanges. NDB accession numbers: DD0032 (brominated) and DD0033 (native).  相似文献   

19.
Previous studies of Fe-bleomycin-mediated DNA cleavage have established that the bithiazole moiety + C-terminal substituent of bleomycin are required for DNA binding, while the metal binding domain is responsible for O2 activation. Although recent studies have indicated that the metal binding domain also participates in DNA unwinding, and in determining the sequence and strand selectivity of DNA cleavage, no study has defined the structural domain that bears primary responsibility for the observed pattern of bleomycin-mediated DNA degradation. Presently, by the use of four synthetic analogs of bleomycin demethyl A2 having the functional domains connected by rigid spacers of varying lengths, the source of DNA cleavage specificity has been determined. When the four analogs cleaved 242- and 127-base pair 5'-32P-end-labeled DNA restriction fragments containing isolated Fe-bleomycin cleavage sites, all four produced cleavage at the same preferred sites. Because the (oligo)glycine spacers altered the distance between the domains by as much as 14 A, the identical cleavage patterns argue that the primary determinant of sequence specificity for these analogs is the metal binding domain.  相似文献   

20.
The interactions of the antitumor antibiotics, chromomycin A3, with a variety of metal cations in the pH range of 3.0–8.5 were systematically studied by CD, absorption, and 1H-nmr spectroscopies. Results were compared with those obtained in the presence of increasing amounts of calf thymus DNA. The negatively charged chromomycin A3, pKa 6.3, forms aggregates that become ordered and smaller in size, in the presence of variety of metal cations. Spectrophotometric titrations have shown that binding of the neutral drug to DNA at pH 4.5 does not require divalent cations, although the strength of the binding is greatly enhanced in their presence. At higher pH values (> 7.0) and low DNA/drug ratio ( > 20), the metal cations are necessary to induce the binding between chromomycin A3 and DNA. At higher DNA/drug ratios (> 100: 1), an appreciable proportion of the drug is bound even in the absence of divalent cations. Its binding affinity to the DNA is enhanced in the presence of these cations and at low pH values. Therefore, we conclude that chromomycin A3 binds in two related modes, in the presence and in the absence of divalent cations. The spectral data accumulated indicate the metal cation is involved in the binding of the drug to the DNA by forming a drug–metal–DNA ternary complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号