首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several species of lizards respond to chemicals from sympatric lizard‐eating snakes with increased tongue‐extrusion rates. These substances also elicit antipredator behavior indicating that they have important ecological functions and the resulting behavior can have serious implications for individual fitness of lizards. However, the source and type of snake chemical cues that elicit these behavioral changes in lizards have yet to be determined. We tested the ability of adult desert iguanas (Dipsosaurus dorsalis) to detect and identify a potential predator by exposing them to lipids extracted from shed snakeskins. Lipids were extracted from cast skins of a known lizard‐eating snake, the California kingsnake (Lampropeltis getula californiae), using chloroform and methanol. Test subjects were presented with skin lipids as well as clean, pungent, and chloroform controls on cotton‐tipped applicators in random order. Desert iguanas directed significantly more tongue extrusions toward applicators bearing snakeskin lipids when compared with controls. In addition, overall tongue‐extrusion frequency increased following exposure to lipids during the 5‐min trials. Desert iguanas clearly detected snakeskin lipids, but this stimulus failed to elicit changes in body posture and movement patterns previously observed in experiments using chemical cues from live snakes. Increased tongue flicking by lizards in response to snakeskin lipids may represent a generalized response to this class of chemicals. Additional potential sources of chemicals used in the detection of lizard‐eating snakes are discussed.  相似文献   

2.
Early life environments have important effects on phenotype development, but it can be difficult to disentangle the relative influences of genotype and environment on phenotypic variation within and among populations. Mangrove rivulus fish (Kryptolebias marmoratus) reproduce by self-fertilization and can generate isogenic lineages, which provides opportunities to resolve how the environment shapes the phenotype independent of genetic variation. Rivulus’ ecology is not well understood, but mangrove water snakes (Nerodia clarkii compressicauda) are thought to be a major predator. To test developmental responses to predator-related cues, four rivulus lineages (two that naturally co-exist with snakes; two that do not) were exposed to one of three treatments for 30 days post-hatching: cues from snakes that were fasted, fed rivulus, or fed heterospecifics. One week after exposure, fear and boldness responses were quantified. Individuals were photographed at 2 and 6 months of age for body size, growth, and body shape analysis. Animals that have historically encountered snakes were more risk averse and had wider heads than animals that historically have not encountered snakes. Rivulus exposed to cues from snakes fed conspecifics or heterospecifics grew faster than those exposed to fasted snake cues. Body shape was more streamlined in animals exposed to cues from snakes fed conspecifics, which may facilitate increased jumping performance as a way to escape aquatic predators. Our results suggest that rivulus exhibit phenotypic plasticity in response to cues associated with predator threat and that historical effects from selection or other evolutionary processes also are important determinants of behavioral and morphological variation.  相似文献   

3.
Small mammals have a number of means to detect and avoid predators, including visual, auditory and olfactory cues. Olfactory cues are particularly important for nocturnal or fossorial species where visual cues would not be as reliable. The Cape ground squirrel (Xerus inauris) is a semi‐fossorial, diurnal mammal from southern Africa. Cape ground squirrels encounter multiple species of predatory snake that pursue individuals underground where visual and social cues are limited. We assessed whether Cape ground squirrels use odours to discriminate between snakes by presenting a non‐venomous snake, a venomous snake and a control odour collected on polyethylene cubes to 11 adult female squirrels from 11 different social groups. Cape ground squirrels responded by inspecting the cube, displaying snake harassment–associated behaviours and decreasing time spent in close proximity to snake odours when compared with a control. They also displayed discrimination between two snake species by increasing the frequency of cube inspection and increasing harassment behaviours with venomous snake odours when compared with non‐venomous snake odours. We conclude that Cape ground squirrels respond with snake‐specific antipredator behaviours when presented olfactory cues alone. Olfactory discrimination may be maintained by the decreased utility of other methods of predator detection: sight and group detection, in below‐ground encounters.  相似文献   

4.
Snakes have provided a serious threat to primates throughout evolution. Furthermore, bites by venomous snakes still cause significant morbidity and mortality in tropical regions of the world. According to the Snake Detection Theory (SDT Isbell, 2006; 2009), the vital need to detect camouflaged snakes provided strong evolutionary pressure to develop astute perceptual capacity in animals that were potential targets for snake attacks. We performed a series of behavioral tests that assessed snake detection under conditions that may have been critical for survival. We used spiders as the control stimulus because they are also a common object of phobias and rated negatively by the general population, thus commonly lumped together with snakes as “evolutionary fear-relevant”. Across four experiments (N = 205) we demonstrate an advantage in snake detection, which was particularly obvious under visual conditions known to impede detection of a wide array of common stimuli, for example brief stimulus exposures, stimuli presentation in the visual periphery, and stimuli camouflaged in a cluttered environment. Our results demonstrate a striking independence of snake detection from ecological factors that impede the detection of other stimuli, which suggests that, consistent with the SDT, they reflect a specific biological adaptation. Nonetheless, the empirical tests we report are limited to only one aspect of this rich theory, which integrates findings across a wide array of scientific disciplines.  相似文献   

5.
There is increasing concern regarding potential impacts of snake fungal disease (SFD), caused by Ophidiomyces ophiodiicola (Oo), on free-ranging snake populations in the eastern USA. The snake cutaneous microbiome likely serves as the first line of defense against Oo and other pathogens; however, little is known about microbial associations in snakes. The objective of this study was to better define the composition and immune function of the snake cutaneous microbiome. Eight timber rattlesnakes (Crotalus horridus) and four black racers (Coluber constrictor) were captured in Arkansas and Tennessee, with some snakes exhibiting signs of SFD. Oo was detected through real-time qPCR in five snakes. Additional histopathological techniques confirmed a diagnosis of SFD in one racer, the species’ first confirmed case of SFD in Tennessee. Fifty-eight bacterial and five fungal strains were isolated from skin swabs and identified with Sanger sequencing. Non-metric multidimensional scaling and PERMANOVA analyses indicated that the culturable microbiome does not differ between snake species. Fifteen bacterial strains isolated from rattlesnakes and a single strain isolated from a racer inhibited growth of Oo in vitro. Results shed light on the culturable cutaneous microbiome of snakes and probiotic members that may play a role in fighting an emergent disease.  相似文献   

6.
There is growing evidence from both behavioral and neurophysiological approaches that primates are able to rapidly discriminate visually between snakes and innocuous stimuli. Recent behavioral evidence suggests that primates are also able to discriminate the level of threat posed by snakes, by responding more intensely to a snake model poised to strike than to snake models in coiled or sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the potential for an underlying neurological basis for this ability. Previous research indicated that the pulvinar is highly sensitive to snake images. We thus recorded pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed photos of snakes in striking and non-striking postures in a delayed non-matching to sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons were tested with the all snake images. We found that pulvinar neurons in the medial and dorsolateral pulvinar responded more strongly to snakes in threat displays poised to strike than snakes in non-threat-displaying postures with no significant difference in response latencies. A multidimensional scaling analysis of the 78 visually responsive neurons indicated that threat-displaying and non-threat-displaying snakes were separated into two different clusters in the first epoch of 50 ms after stimulus onset, suggesting bottom-up visual information processing. These results indicate that pulvinar neurons in primates discriminate between poised to strike from those in non-threat-displaying postures. This neuronal ability likely facilitates behavioral discrimination and has clear adaptive value. Our results are thus consistent with the Snake Detection Theory, which posits that snakes were instrumental in the evolution of primate visual systems.  相似文献   

7.
Traditional explanations for the evolution of high orbital convergence and stereoscopic vision in primates have focused on how stereopsis might have aided early primates in foraging or locomoting in an arboreal environment. It has recently been suggested that predation risk by constricting snakes was the selective force that favored the evolution of orbital convergence in early primates, and that later exposure to venomous snakes favored further degrees of convergence in anthropoid primates. Our study tests this snake detection hypothesis (SDH) by examining whether orbital convergence among extant primates is indeed associated with the shared evolutionary history with snakes or the risk that snakes pose for a given species. We predicted that orbital convergence would be higher in species that: 1) have a longer history of sympatry with venomous snakes, 2) are likely to encounter snakes more frequently, 3) are less able to detect or deter snakes due to group size effects, and 4) are more likely to be preyed upon by snakes. Results based on phylogenetically independent contrasts do not support the SDH. Orbital convergence shows no relationship to the shared history with venomous snakes, likelihood of encountering snakes, or group size. Moreover, those species less likely to be targeted as prey by snakes show significantly higher values of orbital convergence. Although an improved ability to detect camouflaged snakes, along with other cryptic stimuli, is likely a consequence of increased orbital convergence, this was unlikely to have been the primary selective force favoring the evolution of stereoscopic vision in primates.  相似文献   

8.
We examined phylogeographic differentiation of the red-eyed grass snake (Natrix astreptophora) using 1984 bp of mtDNA and 13 microsatellite loci from specimens collected across its distribution range in southwestern Europe and northwestern Africa. Based on phylogenetic analyses of mtDNA, European N. astreptophora constituted the sister clade to a weakly supported North African clade comprised of two deeply divergent and well-supported clades, one corresponding to Moroccan snakes and the other to snakes from Algeria and Tunisia. This tripartite differentiation was confirmed by analyses of microsatellite loci. According to a fossil-calibrated molecular clock, European and North African N. astreptophora diverged 5.44 million years ago (mya), and the two Maghrebian clades split 4.64 mya. These dates suggest that the radiation of the three clades was initiated by the environmental changes related to the Messinian Salinity Crisis and the reflooding of the Mediterranean Basin. The differentiation of N. astreptophora, with distinct clades in the Iberian Peninsula and in the western and eastern Maghreb, corresponds to a general phylogeographic paradigm and resembles the differentiation found in another co-distributed Natrix species, the viperine snake (N. maura). Despite both species being good swimmers, the Strait of Gibraltar constitutes a significant biogeographic barrier for them. The discovery that North Africa harbours two endemic lineages of N. astreptophora necessitates more conservation efforts for these imperilled snakes.  相似文献   

9.
The ability to use multiple cues in assessing predation risk is especially important to prey animals exposed to multiple predators. Wall lizards, Podarcis muralis, respond to predatory attacks from birds in the open by hiding inside rock crevices, where they may encounter saurophagous ambush smooth snakes. Lizards should avoid refuges with these snakes, but in refuges lizards can also find non‐saurophagous viperine snakes, which lizards do not need to avoid. We investigated in the laboratory whether wall lizards used different predator cues to detect and discriminate between snake species within refuges. We simulated predatory attacks in the open to lizards, and compared their refuge use, and the variation in the responses after a repeated attack, between predator‐free refuges and refuges containing visual, chemical, or visual and chemical cues of saurophagous or non‐saurophagous snakes. Time to enter a refuge was not influenced by potential risk inside the refuge. In contrast, in a successive second attack, lizards sought cover faster and tended to increase time spent hidden in the refuge. This suggests a case of predator facilitation because persistent predators in the open may force lizards to hide faster and for longer in hazardous refuges. However, after hiding, lizards spent less time in refuges with both chemical and visual cues of snakes, or with chemical cues alone, than in predator‐free refuges or in refuges with snake visual cues alone, but there were no differences in response to the two snake species. Therefore, lizards could be overestimating predation risk inside refuges. We discuss which selection pressures might explain this lack of discrimination of predatory from similar non‐predatory snakes.  相似文献   

10.
The main threats to primates worldwide are the degradation, fragmentation, and loss of their habitats; hunting (especially for bushmeat); and illegal trade. For many species, the most important threat is forest fragmentation, resulting in small populations that are restricted to isolated forest patches. In this situation, primates are particularly vulnerable to disease. The Endangered blonde capuchin (Sapajus flavius) is now restricted to a few forest patches in Northeast Brazil. We investigated the occurrence of parasites and bacterial diseases in one of three free-ranging groups of S. flavius in a small forest patch in Paraíba state, Northeast Brazil. We tested for antibodies against Leishmania spp., Trypanosoma cruzi, Toxoplasma gondii, Leptospira spp. (24 strains), and Brucella spp.. We used molecular analysis to detect Plasmodium spp., and evaluated blood smears for the presence of hemoparasites. All individuals tested negative for Leptospira spp. and B. abortus, but 8 of 48 (16%) presented antibodies for both Leishmania spp. and T. cruzi. We identified antibodies to T. gondii in 12% of the individuals tested. Plasmodium brasilianum infection was present in 4% of the individuals tested, and blood smears showed microfilariae parasites in 46% of the individuals tested. The occurrence of these infectious diseases in S. flavius may pose a significant threat in terms of reduced recruitment and poor survival rates, and an understanding of the influence of pathogens is crucial for the management of small populations of primates.  相似文献   

11.
Possession of unique defensive toxins by nonindigenous species may increase the likelihood of creating evolutionary traps for native predators. We tested the hypothesis that nonindigenous, toxic Cuban Treefrogs (Osteopilus septentrionalis) have created an evolutionary trap for native, generalist snakes. Additionally, we explored the possibility that populations of snakes that co-occur with Cuban Treefrogs have responded in ways that allow them to escape potential trap dynamics. To evaluate a potential fitness cost of consuming Cuban Treefrogs, we monitored growth of 61 wild-caught Common Gartersnakes (Thamnophis sirtalis) fed exclusive diets of either Cuban Treefrogs, native Green Treefrogs (Hyla cinerea), or native Golden Shiners (Notemigonus crysoleucas). Snakes in the Cuban Treefrog diet treatment gained less than half the mass of those consuming native prey, and Cuban Treefrogs were significantly less digestible than native prey. There was no difference in the response of gartersnakes to prey scent cues of Cuban Treefrogs and Green Treefrogs. Our results indicate that Cuban Treefrogs likely represent an evolutionary trap for snakes because consumption of these frogs carries fitness costs, yet snakes fail to recognize this prey as being costly. We found no difference in growth or response to prey cues between snakes from invaded and non-invaded regions, suggesting snakes have not responded to escape trap dynamics. Interactions of native snakes and Cuban Treefrogs support the idea that introduced species with novel toxins may increase the likelihood of evolutionary trap formation.  相似文献   

12.
Losses of adaptations in response to changed selective pressures are evolutionarily important phenomena but relatively few empirical examples have been investigated in detail. To help fill this gap, we took advantage of a natural experiment in which coral snake mimics occur on two nearby tropical islands, one that has coral snake models (Trinidad) and one that lacks them (Tobago). On Tobago, an endemic coral snake mimic (Erythrolamprus ocellatus) exists but has a relatively poor resemblance to coral snakes. Quantitative image analysis of museum specimens confirmed that E. ocellatus is a poor mimic of coral snakes. To address questions related to the functional importance of this phenotype, we conducted a field experiment on both islands with snake replicas made of clay. These results clearly indicated a strong inter-island difference in predator attack rates where snake replicas that resembled coral snakes received protection in Trinidad but not in Tobago. Further, a molecular phylogenetic analysis of the ancestry of E. ocellatus revealed that this poor coral snake mimic is deeply nested in a clade of good coral snake mimics. These data suggest that the lack of coral snakes on Tobago altered the selective environment such that the coral snake mimicry adaptation was no longer advantageous. The failure to maintain this ancestral feature in allopatry provides a compelling example of how losses of complex adaptations can occur.  相似文献   

13.
Luisa Amo 《Animal behaviour》2004,67(4):647-653
The threat sensitivity hypothesis assumes that multiple cues from a predator should contribute in an additive way to determine the degree of risk-sensitive behaviour. The ability to use multiple cues in assessing the current level of predation risk should be especially important to prey exposed to multiple predators. Wall lizards, Podarcis muralis, respond to predatory attacks from birds or mammals by hiding inside rock crevices, where they may encounter another predator, the smooth snake, Coronella austriaca. We investigated in the laboratory whether chemical cues may be important to wall lizards for detection of snakes. The greater tongue-flick rate and shorter latency to first tongue-flick in response to predator scents indicated that lizards were able to detect the snakes' chemical cues. We also investigated the use of different predatory cues by lizards when detecting the presence of snakes within refuges. We simulated successive predator attacks and compared the propensity of lizards to enter the refuge and time spent within it for predator-free refuges, refuges containing either only visual or chemical cues of a snake, or a combination of these. The antipredatory response of lizards was greater when they were exposed to both visual and chemical cues than when only one cue was presented, supporting the threat sensitivity hypothesis. This ability may improve the accuracy of assessments of the current level of predation risk inside the refuge. It could be especially important in allowing lizards to cope with threats posed by two types of predators requiring conflicting prey defences.  相似文献   

14.
The Sargassum community consists of a unique and diverse assemblage of symbiotic fauna critical to pelagic food chains. Associated symbionts presumably have adaptations to assist in finding Sargassum. In situ scattered Sargassum patches accumulate as they are pushed toward the shoreline (via wind, waves, currents or tides) and are frequently less than 1 m apart and in depths of 10 cm or less as the patches approach the shoreline Crabs, and other symbiotic fauna, must relocate to another patch that is seaward in direction or likely perish as their current patch will likely become beached. This study investigated sensory cues used for host location and selection by the Sargassum crab, Portunus sayi. Chemical detection trials were conducted with a two-chamber choice apparatus with Sargassum spp. and Thalassia testudinum as habitat source odors. Visual detection trials (devoid of chemical cues) and habitat selection trials were conducted in which crabs were given a choice between hosts. Results showed that P. sayi responded to chemicals from Sargassum spp. Crabs visually located host habitats but did not visually distinguish between different hosts. In host selection trials, crabs selected Sargassum spp. over artificial Sargassum and T. testudinum. These results suggest that crabs isolated from Sargassum likely use chemoreception; within visual proximity of a potential patch, crabs likely use both chemical and visual information.  相似文献   

15.
Prey often avoid predator chemical cues, and in aquatic systems, prey may even appraise predation risk via cues associated with the predator's diet. However, this relationship has not been shown for terrestrial predator-prey systems, where the proximity of predators and prey, and the intensity of predator chemical cues in the environment, may be less than in aquatic systems. In the laboratory, we tested behavioural responses (avoidance, habituation and activity) of terrestrial red-backed salamanders, Plethodon cinereus, to chemical cues from garter snakes, Thamnophis sirtalis, fed either red-backed salamanders or earthworms (Lumbricus spp.). We placed salamanders in arenas lined with paper towels pretreated with snake chemicals, and monitored salamander movements during 120 min. Salamanders avoided substrates preconditioned by earthworm-fed (avoidanceX+/-SE=91.1+/-2.5%, N=25) and salamander-fed (95.2+/-2.5%, N=25) snakes, when tested against untreated substrate (control). Salamanders avoided cues from salamander-fed snakes more strongly (75.2+/-5.5%, N=25) than earthworm-fed snakes when subjected to both treatments simultaneously, implying that salamanders were sensitive to predator diet. Salamanders tended to avoid snake substrate more strongly during the last 60 min of a trial, but activity patterns were similar between salamanders exposed exclusively to control substrate versus those subject to snake cues. In another experiment, salamanders failed to avoid cues from dead conspecifics, suggesting that the stronger avoidance of salamander-fed snakes in the previous experiment was not directly due to chemical cues emitted by predator-killed salamanders. Salamanders also did not discriminate between cues from a salamander-fed snake versus a salamander-fed snake that was recently switched (i.e. <14 days) to an earthworm diet. Our results imply that terrestrial salamanders are sensitive to perceived predation risk via by-products of predator diet, and that snake predators rather than dead salamanders may be largely responsible for the release of such chemicals. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

16.
ABSTRACT The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 ± 14.7 ha) was similar to that reported in other parts of the species’ range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States.  相似文献   

17.
Snakes elicit a higher level of fear than other vertebrate animals, yet specific cues responsible for fear of snakes are equivocal. The bright colouration hypothesis suggests that fear responses to snakes are triggered by aposematic colouration, not by snakes per se. We investigated the role of aposematic colouration in fear of snakes in a sample of 10- to 15-year-old Slovak children. Both aposematically and cryptically coloured snakes presented as both colour and black-and-white pictures received higher perceived fear scores than other vertebrates. This suggests that aposematic colouration does not play a crucial role in eliciting fear of snakes. Our results support the snake detection theory suggesting that the human visual system has been influenced by long coexistence between predatory snakes and mammals. As a result, humans have evolved an attentional bias ultimately focused on the correct and rapid detection of these threats.  相似文献   

18.
Snakes are sold in many markets and religious article stores in Brazil. Besides their use as food, snakes are exploited in a variety of ways, such as pets, or for use in traditional medicine and magic/religious rituals (especially in Afro-Brazilian religions). Despite widespread commercialization, there is a general lack of information about this snake trade, which makes it difficult to evaluate its magnitude and its impact on reptile populations. This work documents the commercialization and use of snakes in five cities in Northeastern (São Luís, Teresina, João Pessoa and Campina Grande) and Northern (Belém) Brazil, through interviews with 119 merchants of biological products in outdoor markets and religious articles stores. The data was gathered through the use of semi-structured questionnaires, complemented by semi-directed interviews. The products derived from 11 snake species were being commercialized for medicinal or magical/religious purposes. Boa constrictor, Crotalus durissus and Eunectes murinus were the species most commonly sold. The economic importance of snakes as sources of medicines and religious products demonstrates the need for the development of sustainable use programs for these species.  相似文献   

19.
Snake naive and experienced California ground squirrels (Spermophilus beecheyi) were video taped while interacting with either a gopher snake or rattlesnake in a simulated burrow dimly illuminated with red light. Using nonvisually guided behavior, naive and experienced squirrels reacted to snakes in qualitatively similar ways, and behaved more defensively toward snakes than toward a control stimulus (white rat). The squirrels alternately interacted with the snake and attempted to escape from the burrow, which had a sealed entrance. Interaction with the snake included cautious approach in elongate postures, prolonged investigation of adjacent alleys before entering them, kicking sand at the snake, frequent tooth chattering, occasional calling, and building burrow plugs out of sand. These they packed by butting with their heads. When permitted to escape from the burrow, they turned just outside the entrance to tail flag, kick sand, scent mark, and finally plug the burrow. Since visual cues were not available, olfactory and auditory stimuli from the snake appeared to mediate snake-directed behavior in the burrow.  相似文献   

20.
Rattlesnakes use prey chemical cues for ambush site selection and for relocating envenomated (E) prey following a predatory strike. The ability to discriminate between E and non-envenomated (NE) prey cues has been widely studied in rattlesnake species that produce type I venoms, which show high levels of snake venom metalloproteinase (SVMP) activity and low lethal toxicity [lethal dose which kills 50% of test animals (LD50) >1.0 µg/g]. However, E vs. NE prey discrimination studies have not been conducted on rattlesnake species that produce a type II venom that consists of low SVMP activity and high lethal toxicity (LD50 <1.0 µg/g). In the current study, long-term captive Crotalus oreganus concolor, which produce a type II venom, were tested for their ability to discriminate between chemical cues of natural (Sceloporus undulatus and Peromyscus maniculatus) and non-natural (Hemidactylus frenatus and Mus musculus) prey cues, as well as for their ability to discriminate between E and NE mouse carcasses, when prey envenomation occurred by a conspecific. Snakes showed significant levels of tongue flicking towards the chemical extracts of P. maniculatus and M. musculus, suggesting that C. oreganus concolor exhibit both innate and experience-based plasticity in response to prey chemical cues. In addition, C. oreganus concolor were able to discriminate between E and NE prey sources, when envenomation occurred by a conspecific, indicating that a type II venomous species can also discriminate between E and NE chemical cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号