首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Fatty acid synthesis by subcellular fractions of heart and liver of chick embryos at varying stages of development has been studied. Fatty acid synthetase activity is associated with the embryonic heart at early stages of development, as suggested by substrate requirement, Schmidt decarboxylation of synthesized fatty acids and gas liquid chromatographic identification of the products as palmitic and stearic acids. The fatty acid synthetase activity decreases in heart cytosol with age of the embryo and is absent in the newly hatched chick and in older chicken. The acetyl CoA carboxylase activity is negligible in embryonic and adult chicken heart. The fatty acid synthetase activity in liver is low, but measurable during the entire embryonic development. The activity increases by about three-fold on hatching and thereafter in fed, newly hatched chicks by about 35-fold, over the basal embryonic activity. The acetyl and malonyl transacylase activities in the heart and liver cytosols during development followed closely the fatty acid synthetase activities in heart and liver, respectively. A non-coordinate induction of fatty acid synthetase and acetyl CoA carboxylase activities in liver was observed during development. The microsomal chain elongation in liver and heart followed the pattern of fatty acid synthetase activity in liver and heart, respectively. The mitochondrial chain elongation in embryonic heart is initially low and increases with age; while this activity in liver is higher in early stages of embryonic development than in the older embryos and the chicks. Measurement of lipogenesis from acetate-1-14C by liver and heart slices from chick embryos and newly hatched chicks support the conclusions reached in the studies with the subcellular fractions. The results obtained indicate that the major system of fatty acid synthesis in embryonic and adult heart is the mitochondrial chain elongation. In embryonic liver, fatty acid synthesis proceeds by chain elongation, while the de novo system is the major contributor to the lipogenic capacity of the liver after hatching.  相似文献   

4.
5.
6.
The evolution throughout embryonic development of the rate at which acetate was converted into sterols was studied in chick brain and liver. Acetate incorporation (nmol/h/g tissue) was clearly higher in brain than in liver and sharply decreased with the age of embryo. Cholesterol and desmosterol were the major sterols formed from acetate by chick embryo brain, followed by lanosterol and squalene. No desmosterol was found in chick embryo liver, organ where cholesterol was the major sterol synthesized. In brain, the relative percentage of cholesterol increased throughout embryonic development reaching more than 50% at hatching, while the percentage of desmosterol decreased during the same period and represented at hatching only about 10–15% of the total nonsaponifiable fraction. The relative percentages of lanosterol and squalene did not change significantly throughout the period assayed. In liver, the percentage of cholesterol increased until 19 days but sharply decreased at hatching.  相似文献   

7.
8.
9.
The developmental course of tyrosyltubulin ligase activity has been measured in three tissues of the embryonic chick: skeletal muscle; whole brain; and liver. There is a sharp peak in enzyme activity in muscle at day 13 when myotube formation is proceeding rapidly. In brain, high activities are maintained over a prolonged period. Liver has relatively little activity which decreases steadily over the entire developmental period that was examined. The possible relationship between high levels of tyrosyltubulin ligase activity and morphological changes dependent upon microtubule formation is discussed.  相似文献   

10.
The activities of glutamic acid decarboxylase (GAD), choline acetylase, dopa decarboxylase, and tyrosine hydroxylase were measured by radioactive assays and of acetylcholinesterase by a colorimetric procedure on homogenates of the tectum, forebrain, and cerebellum of the chick from the third embryonic day to 3 weeks post-hatch. GAD showed a rapid development beginning about day 9 and peaking at or before hatching: there were generally similar levels in all 3 areas during development although in the oldest chicks the tectum had significantly higher GAD levels than the forebrain, the cerebellar levels being intermediate. The other enzymes all showed a somewhat later development with sharp increases beginning on or after day 11 and peak levels being reached only after hatching. The different brain regions also showed much greater disparity in levels of these other enzymes than found for GAD. The tectum contained the greatest concentrations of choline acetylase and acetylcholinesterase, and the forebrain had the most tyrosine hydroxylase and dopa decarboxylase. The data may be useful for correlation with morphological developmental studies.  相似文献   

11.
12.
Fatty acid synthesis in developing mouse liver   总被引:3,自引:0,他引:3  
  相似文献   

13.
Extracts of embryonic chick brain, heart, and liver agglutinate glutaraldehyde-fixed trypsinized or pronase-treated rabbit erythrocytes. Agglutination activity of extracts from each organ was inhibited by a number of saccharides. Lactose was the most potent saccharide inhibitor of those tested. The specific agglutination activity of the extracts from each of the organs studied changed with development of the embryo. In general, specific agglutination activity declined later in embryogenesis, and after hatching. However, the pattern of developmental change differed for each of the organs tested. Liver was unusual in that, after hatching, agglutination activity rose again; and the agglutinin found at this time was apparently different from that found in the embryo.  相似文献   

14.
15.
A method has been described for the study of tissue sulfate-conjugating systems in vitro. Liver slices from embryonic chicks were maintained in vitro in a medium containing labeled inorganic sulfate and phenol. It was found that more of the sulfate was esterified at 20 °C. than at 37 °C. due to the longer continued activity at the lower temperature. All sulfate-esterifying activity was lost in liver slices maintained at 37 °C. for 30 hr. while those cultures maintained at 20 °C. continued to esterify sulfate for 70 hr.On the basis of our data there would appear to be a change in the thermal stability of the sulfate-esterifying enzyme system of the chick liver upon its transition from the embryonic stage to the stage of the fully developed chick. Data were presented for the chick 4 months ex ovo. We have been unable to detect any analogous temperature effects upon the sulfate-esterifying system in the livers of embryonic and adult rats.  相似文献   

16.
1. The phospholipid composition of hepatic microsomal fractions from different developmental stages of embryonic chick was established. The major components were phosphatidylcholine (approx. 66%), phosphatidylethanolamine plus phosphatidylserine (approx. 21%) and sphingomyelin (approx. 9%). 2. There were no significant changes in the phospholipid composition during embryonic development from 9 to 20 days. 3. When microsomal subfractions were prepared it was found that the smooth-microsomal fractions (Ia and Ib) had a significantly greater sphingomyelin content than the rough-microsomal fraction (II). This was compensated by a lower phosphatidylcholine content in fractions Ia and Ib and an increase of phosphatidylcholine in fraction II. 4. The significance of the differences in the phospholipid composition of smooth and rough microsomes is discussed with particular reference to the origin and interrelation of smooth and rough endoplasmic reticulum.  相似文献   

17.
18.
We describe the expression pattern of CEPU-1, a cell adhesion molecule of the immunoglobulin superfamily, in the early chick embryo brain. An initially broad domain of expression, encompassing forebrain, midbrain and anterior hindbrain, is subsequently narrowed down to a ring-shaped domain at the midbrain-hindbrain boundary, co-localizing precisely with the expression of Wnt1 at the isthmus. In addition, CEPU-1 is expressed in the dorsal aspect of rhombomere 4 and its emigrating neural crest cells. Later in development, we also find CEPU-1 expression in other parts of the developing nervous system such as sensory ganglia and in the ventral aspect of forebrain, midbrain and hindbrain.  相似文献   

19.
The DNA repeat size is determined by micrococcal nuclease digestion kinetics and subsequent electrophoresis of the products among various chick embryonic tissues. The repeat size is found to be not significantly different from 193 to 197 bp, for brain and liver at 11 days and for lens epithelium and fiber at different embryonic stages. However, the pattern of micrococcal digestion seems to reveal an overall chromatin modification as a function of development in the lens fibers.  相似文献   

20.
Catecholamine and indoleamine levels were determined in cultured neurons from chick embryos and in the homologous embryonic cerebral hemispheres in order to study their neurotransmission systems. The seeding of a large number of cells resulted in a pure neuronal culture made of clusters interconnected by processes. Norepinephrine, which was absent from the starting material of the culture, appeared on the 2nd day and then decreased. A small amount of epinephrine was present on the 2nd day and decreased thereafter. Dopamine was not detected. In the cerebral hemispheres of chick embryos, dopamine appreared on the 10th day in ovo and increased steadily up to the 18th day. Epinephrine was also present in the cerebral hemispheres. Its level increased up to the 14th day and then decreased. Indoleamines were measured in the same material. The level of serotonin was markedly higher than that of catecholamines and it increased during cultivation. Tryptophan was already present in the starting material and its amount increased during cultivation. The level of 5-hydroxyindoleacetic acid changed like that of serotonin. In the embryonic cerebral hemispheres, the concentration of serotonin was highest on the 12th day after incubation and then decreased. Tryptophan level decreased steadily all during the embryogenesis. These results were discussed on the ground of differences in the synthesized neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号