首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the Asd+ vector pYA292, and the construct was introduced into the avirulent delta cya delta crp delta asd S. typhimurium chi 3987 for oral immunization of birds. The gene encoding the 21-kDa protein was expressed equivalently in B. avium 197, delta asd E. coli chi 6097, and S. typhimurium chi 3987 and was localized primarily in the cytoplasmic membrane and outer membrane. In preliminary studies on oral inoculation of turkey poults with S. typhimurium chi 3987 expressing the gene encoding the B. avium 21-kDa protein, it was determined that a single dose of the recombinant Salmonella vaccine failed to elicit serum antibodies against the 21-kDa protein and challenge with wild-type B. avium 197 resulted in colonization of the trachea and thymus with B. avium 197.  相似文献   

2.
The ompF gene codes for a major outer membrane protein of Escherichia coli. A plasmid was constructed in which the structural gene for human beta-endorphin is preceded by the upstream region of the ompF gene consisting of the promoter region and the coding regions for the signal peptide and the N terminus of the OmpF protein. When the plasmid was introduced into E. coli N99, and OmpF-beta-endorphin fused peptide was synthesized and secreted into the culture medium through both the cytoplasmic and outer membranes. The OmpF signal peptide was cleaved correctly during the secretion, indicating that the export of the fused protein across the cytoplasmic membrane was dependent on the signal peptide. The secretion into the culture medium was apparently selective. Neither beta-lactamase nor alkaline phosphatase (both are periplasmic proteins) appeared in the culture medium in significant amounts. The mode of passage of the fused peptide across the outer membrane is discussed.  相似文献   

3.
4.
The ompA gene from Salmonella typhimurium, encoding a major heat-modifiable protein of the outer membrane, has been cloned and extensively characterized. When expressed in Escherichia coli the gene directs the synthesis of an OmpA protein which is functionally and topologically indistinguishable from that made in S. typhimurium, thus indicating that export and membrane incorporation are very similar in the two organisms. The S. typhimurium protein effectively substitutes for the E. coli polypeptide in F-dependent conjugation and in the uptake of certain colicins, although it cannot serve as the receptor for the OmpA-specific phages K3 and TuII. On examination of the primary sequence of the protein, predicted from the nucleotide sequence of its gene, it was found that those domains likely to be exposed on the cell surface were significantly different to the corresponding regions of the E. coli polypeptide. These differences in the structure of the two proteins have been used to interpret differences in their biological activities.  相似文献   

5.
Outer membrane materials prepared from three independently isolated spontaneous Escherichia coli tolF mutants contained no detectable protein Ia. The loss of this protein was nearly completely compensated for by an increase in other major outer membrane proteins, Ib and II. Thus, the major outer membrane proteins accounted for 40% of the total cell envelope protein in both tol+ and tolF strains. No changes were found in the levels of inner membrane proteins prepared from tolF strains when compared with similar preparations from the tol+ strain. Phage-resistant mutants were selected starting with a tolF strain by using either phage TuIb or phage PA2. These phage-resistant tolF strains contained neither protein Ia nor protein Ib. The mutation leading to the loss of protein Ib in these strains is independent of the tolF mutation and is located near malP on the E. coli genetic map.  相似文献   

6.
7.
We have recently described a previously uncharacterized outer membrane protein of Salmonella typhimurium and Escherichia coli and cloned and sequenced the corresponding gene, the ompH gene, of S. typhimurium (P. Koski, M. Rhen, J. Kantele, and M. Vaara, J. Biol. Chem. 264:18973-18980, 1989). We report here the cloning, sequencing, and expression of the corresponding gene of Yersinia enterocolitica. It is significantly homologous to the ompH genes of E. coli and S. typhimurium (homology percentages, 65 and 64%, respectively), has a promoter region strongly homologous to the E. coli 17-bp class consensus promoter, and encodes a protein consisting of 165 amino acids (22 of which form the signal sequence). The plasmid-borne Y. enterocolitica ompH was found to be expressed both in the E. coli host and in minicells. The isolated outer membrane of Y. enterocolitica was shown to contain OmpH. The homology of the Y. enterocolitica OmpH protein is 66% with E. coli OmpH and 64% with S. typhimurium OmpH. All OmpH proteins have almost identical hydrophobic profiles, charge distributions, and predicted secondary structures. Because yersiniae are considered rather distant relatives of E. coli and S. typhimurium in the Enterobacteriaceae family, these results might indicate that most or all strains of the family Enterobacteriaceae have OmpH proteins remarkably homologous to those now sequenced.  相似文献   

8.
9.
The phenotypic expression of protein E, a recently described major outer membrane protein, is associated with a mutation at a locus on the Escherichia coli chromosome that we call nmpA. nmpA is located between rbsK and uncA at 82.7 min on the E. coli linkage map. The nmpA locus is also the site of the mutations which lead to the formation of major outer membrane proteins Ic or e. It is likely proteins E, Ic, and e are closely related or identical. The mutant nmpA allele is dominant.  相似文献   

10.
When the 42,000-dalton major outer membrane protein of Escherichia coli O111 is examined on alkaline polyacrylamide gels containing sodium dodecyl sulfate, it is resolved into three distinct bands designated as proteins 1, 2, and 3. Band 3 consists of two distinct polypeptides, proteins 3a and 3b. E. coli K-12 does not make any protein 2, but makes proteins similar to 1, 3a, and 3b as indicated by comparison of cyanogen bromide peptide patterns. Several Shigella species and most other strains of E. coli resemble E. coli K-12 in that they lack protein 2, whereas Salmonella typhimurium is more similar to E. coli O111. In addition to these species and strain differences, cultural differences resulted in differences in the outer membrane protein profiles. Under conditions of catabolite repression, the level of protein 2 in E. coli O111 decreased while the level of protein 1 increased. An enterotoxin-producing strain similar to E. coli O111 produced no protein 1 and an elevated level of protein 2 under conditions of low catabolite repression. The levels of proteins 1 and 3 are also different in different phases of the growth curve, with protein 1 being the major species in the exponential-phase cells and protein 3 being the major species in stationary-phase cells. A multiply phage-resistant mutant of E. coli K-12 with no obvious cell wall defects produced no protein 1 or 2, but made increased amounts of protein 3. Thus, the major outer membrane proteins of E. coli and related species may vary considerably without affecting outer membrane integrity.  相似文献   

11.
Salmonella typhimurium LT2 lines, if phenotypically rough, are fully sensitive to bacteriocin 4-59, produced by Salmonella canastel strain SL1712. Bacteriocin-resistant mutants fell into three classes. Those resistant to phage ES18 and to albomycin proved to be mutants of class chr (equivalent to tonB of Escherichia coli); these mutants still adsorb the bacteriocin and so are classified as tolerant. Another class of (incompletely) tolerant mutants was resistant to phage PH51; their envelope fractions lacked the band corresponding to outer membrane protein 34K, known to serve for adsorption of phage PH51. A third class of mutants, which did not adsorb the bacteriocin, was unaltered in sensitivity to phages. Their envelopes lacked the 33K band, indicating absence of the outer membrane protein 33K, considered to correspond to outer membrane protein II* of E. coli, which in that species is determined at locus ompA (formerly tolG or con). Phage P22 HT105/1 cotransduced the 33K S. typhimurium gene (to be called ompA, to accord with E. coli usage) with pyrD+ at about 30% frequency when the donor allele was ompA+ or one ompA, but at only 3 to 11% when the donor allele was another ompA. When the donor carried either of two long deletions of the put (proline utilization) operon, phage P22 HT105/1 cotransduced put (and ompA+) with pyrD+ at low frequency. The cotransduction data indicate that ompA of S. typhimurium is located between pyrD and put, nearer the former. This corresponds to the map position of ompA in E. coli K-12.  相似文献   

12.
A specialized transducing phage lambda carrying the structural gene for the OmpF protein, an outer membrane matrix protein, was isolated. The phage carries the 20.5--21-min region of the Escherichia coli K-12 chromosome and carries asnS, ompF, and aspC genes.  相似文献   

13.
14.
In Escherichia coli K-12, the phoE gene, encoding a phosphate-limitation-inducible outer membrane pore protein (PhoE), is closely linked to the genes proA and proB. When the corresponding fragment of the Salmonella typhimurium chromosome was transferred to E. coli K-12 using an RP4::miniMu plasmid, pULB113, no production of S. typhimurium PhoE could be detected. Nevertheless, DNA hybridization studies revealed that the corresponding plasmid did contain S. typhimurium phoE. Production of S. typhimurium PhoE in E. coli was detected only after subcloning the gene in a multicopy vector. Nucleotide (nt) sequence analysis showed extensive homology of S. typhimurium phoE to the E. coli gene and suggested possible explanations for the low expression of S. typhimurium phoE in E. coli. In addition, the sequence information was used to develop Salmonella-specific DNA probes. Two oligodeoxyribonucleotides were synthesized based on nt sequences encoding the fifth and eighth cell-surface-exposed regions of PhoE. When used in polymerase chain reactions, these probes turned out to be specific, i.e., no crossreactions occurred with the non-Salmonella strains, whereas 132 out of 133 tested Salmonella strains were recognized.  相似文献   

15.
Genetic mapping of ribosomal protein cistrons of Salmonella typhimurium and Escherichia coli was performed by phage P1 mediated, generalized transduction. From an E. coli hybrid strain which carried a S. typhimuirum F' factor, an E. coli strain was constructed which had integrated S. typhimurium genetic material including the region of the strA locus. Salmonella genetic material from this hybrid was transduced into E. coli recipients. The ribosomal protein electrophoretic patterns of these hybrid transductants were correlated with the presence of markers contributed by each parent.The results of these studies indicate that cistrons for at least three characteristic S. typhimurium and two E. coli 30S ribosomal proteins are closely linked to the strA locus on the genetic maps of both organisms. At least one cistron coding for a 50S ribosomal protein is also closely linked to this locus on both maps. These findings support the concept that cistrons coding for the ribosomal proteins are clustered in one area of the genome. Mutations to spectinomycin and streptomycin resistance are closely linked in S. typhimurium and are located at strA.  相似文献   

16.
17.
A cloned fragment of Salmonella typhimurium DNA complemented the defect in cobalamin uptake of Escherichia coli or S. typhimurium btuB mutants, which lack the outer membrane high-affinity transport protein. This DNA fragment did not carry btuB and was derived from the 90-kb plasmid resident in S. typhimurium strains. The cobalamin transport activity engendered by this plasmid had substantially lower affinity and activity than that conferred by btuB. Complementation behavior and maxicell analyses of transposon insertions showed that the cloned fragment encoded five polypeptides, at least two of which were required for complementation activity. The nucleotide sequence of the coding region for one of these polypeptides, an outer membrane protein of about 84,000 Da, was determined. The deduced polypeptide had properties typical of outer membrane proteins, with an N-terminal signal sequence and a predicted preponderance of beta structure. This outer membrane protein had extensive amino acid sequence homology with PapC and FaeD, two E. coli outer membrane proteins involved in the export and assembly of pilus and fimbria subunits on the cell surface. This homology raises the likelihood that the observed cobalamin transport did not result from the production of an authentic transport system but that overexpression of one or more outer membrane proteins allowed leakage of cobalamins through the perturbed outer membrane. These results also suggest that the 90-kb plasmid carries genes encoding an adherence mechanism.  相似文献   

18.
The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in lambda gtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by lambda Tn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar [14C]fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to [14C]fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号