首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigeal germination of a dicot, like lupin (Lupinus albus L.), produces a seedling with a characteristic hypocotyl, which grows in darkness showing a steep growth gradient with an elongation zone just below the apex. The role of phytohormones, such as auxin and ethylene, in etiolated hypocotyl growth has been the object of our research for some time. The recent cloning and expression of three genes of influx and efflux carriers for polar auxin transport (LaAUX1, LaPIN1 and LaPIN3) reinforces a previous model proposed to explain the accumulation of auxin in the upper growth zone of the hypocotyl.Key words: auxin carriers, auxin transport gradient, etiolated hypocotyl growth, Lupinus albusMost plants show a typical axial polar and branched (dendritic) morphology to compensate for their immobility by optimally exploiting the resources available in a limited environment.From Julius von Sachs1 to Tsvi Sachs2 many plant physiologists sought to explain how the axis is maintained and what type of signals are interchanged between poles. It was demonstrated that auxins were the determining factors in maintaining the polarity in shoots and roots and a reductionistic approach leads to conclude that such polarity had to be established at the cellular level. A chemiosmotic theory was then proposed, which implied an asymmetric distribution of efflux carriers at the bottom of a cell, linked to pH gradients to maintain different undissociated/dissociated forms of auxin separated between apoplast and symplast spaces.3In recent years, the use of Arabidopsis thaliana as a plant model has given additional support to the hypothesis that polar auxin transport is restricted to certain cells and mediated by influx (AUX1 and LAX1–4 proteins) and efflux carriers (PIN1–8 proteins).46 Currently, we have a good idea of the topology of Arabidopsis carrier distribution, especially in roots.4,5 Additional (MDR/PGP)7 or parallel (TRH1)8 components of the transport system are now emerging.However, while accepting the enormous advances and contributions to plant science provided by the use of Arabidopsis thaliana, we remain true (loyal) to the particular model adopted by the Department of Plant Biology, University of Murcia (Spain) in the 1970''s: the hypocotyl of lupin seedlings cultivated in darkness. In such conditions, the organ grows heterotrophically and longer than in light.The cotyledons and meristem at the top supply nutrients and hormones in a basipetal direction.The hypocotyl is a cylindrical column, with a radial symmetry that clearly shows differentiated tissues: epidermis, cortex, vascular cylinder and pith. Its size allows surgical separation of the tissues using suitable glass capillaries.At the beginning lupin was chosen because it had higher IAA-oxidase activity than pea, bean, oat or barley seedlings. At the time, it was thought that growth was mainly controlled through auxin catabolism (a fruitful line involving peroxidases was developed later). However, the etiolated hypocotyl was soon adopted preferentially by our group because of its qualities as a model for studying the relationship between hormone levels (auxin and ethylene) and growth. Our Portuguese colleagues have also used lupin as a model with successful results.9Bellow, we detail the landmarks of our research to date. Hypocotyl growth shows a characteristic pattern. Unlike plants grown in the light, in which all the cells along the hypocotyl elongate continuously throughout the growth period,10,11 there is a steep growth gradient in the dark with an elongation zone just below the apex12 (see Fig. 1 for details). This cell growth pattern in etiolated hypocotyls was described in lupin and then in Arabidopsis.11 In this pattern, it is important to note that there is compensation along the organ between the cell diameter and the cell wall thickness. Once the cell growth pattern was known, we investigated its relation with the level of two phytohormones, auxin and ethylene, which might participate in the growth regulation. Special attention was paid to the distribution of endogenous IAA and its relation with growth. The results showed good correlation between the auxin levels and the cell size.13,14 Auxin from the apex appears to be responsible for hypocotyl growth, since decapitation of seedlings strongly reduced growth, which was restored after the application of exogenous IAA to the cut surface.15 In light of the fact that growth depended on auxin from the apex, we investigated the nature of the auxin transport and demonstrated that this transport is polarized and sensitive to inhibition by specific inhibitors of polar auxin transport (PAT) such as 2,3,5-triiodobenzoic acid and 1-N-naphthylphtalamic acid (NPA).16,17 Basipetal PAT mainly occurred in the stele,15 while cells in the epidermis and outer cortex are the limiting factor in auxin-induced shoot growth.1820 The finding that during PAT auxin can move laterally from transporting cells in the stele to the outer tissues of the elongation zone15 could explain the apparent conflict between the localization of PAT and the auxin target cells for elongation. In fact, epidermal cells acted as a sink for lateral auxin movement (LAM).17Open in a separate windowFigure 1Distribution of growth and cell size along the hypocotyl in etiolated lupin seedlings. At 3 d, hypocotyls were marked with ink, delimiting four 5-mm long zones including the apical, middle and basal zones. The hypocotyl growth ceased at day 12 and almost no growth was observed in the basal zone after day 3. From 3 to 6 d the growth was localized between the apical and basal zones, while most growth occurring from 6 to 12 d was localized in apical and middle zones. The cell size represents the cell length and cell diameter (the cell wall excluded) and corresponds to the second cell layer of cortex near the vascular cylinder. Similar results were obtained in cells from epidermis and pith. In each zone the cell length increased and the cell diameter showed little change during hypocotyl ageing. The final size at the end of the growth period varied along the hypocotyl, the cells becoming shorter and broader from the apical to the basal zones. In spite of the fact that cell diameter increased basipetally, no significant variation in hypocotyl diameter was found along the organ during the growth period. A morphometric study revealed that cell wall thickness in the apical cells was twice that in the basal cells at the end of the growth period i.e., the thinner apical cells had thicker cell walls, which may help explain the consistency of hypocotyl diameter along the organ.If PAT provides the auxin for growth and elongating growth is restricted to the apical region in etiolated hypocotyls, the question is: how does auxin accumulate in the elongation region?In a former study, we proposed that variations in auxin transport along actively growing lupin hypocotyl could produce such accumulation.21 Recently we extensively studied the variation of PAT along the lupin hypocotyls in seedlings of different ages, finding that certain parameters of PAT, such as transport intensity, polarity (basipetal vs acropetal) and sensitivity to NPA inhibition, showed a good correlation with the distribution of growth along the hypocotyl and its variation with ageing.22 These results suggest that a basipetally decreasing gradient in PAT along the hypocotyl may be responsible for the auxin distribution pattern controlling growth, since the existence of such a PAT gradient might generate the so-called barrier effect, which could produce an auxin gradient along the hypocotyl, the auxin content being higher in the apical elongation zone. To investigate whether these PAT variations can be explained in terms of auxin carrier distribution, we isolated three genes coding for auxin influx (LaAUX1) and efflux (LaPIN1 and LaPIN3) carriers, and studied their expression in different tissues along the hypocotyl at different ages.23 The expression of LaAUX1 and LaPIN3 occurred both in the stele and in the outer tissues, while the expression of LaPIN1 was restricted to the stele and showed a basipetally decreasing gradient along the hypocotyl. The decisive role ascribed to PIN1 in polar auxin transport due to its localization in the basal end of transporting cells,24 and the existence of such a gradient in the expression of LaPIN1 support the hypothesis of a barrier effect (generated by decreasing auxin transport) previously proposed as being responsible for the auxin gradient which controls the growth pattern in etiolated lupin hypocotyls.The acid-growth theory of auxin action was also tested, observing that the elongation growth of etiolated hypocotyl segments of lupin was stimulated by acid pH and IAA. Both factors stimulated growth in a more than additive way, suggesting a synergistic action between them.25 The recent finding of a soluble auxin receptor (intracellular) reinforces the interest of the above study (which has remained a “sleeping beauty”) because pH affects IAA uptake.There are still several questions that must be answered before we can fully understand the growth pattern exhibited by etiolated lupin hypocotyls. Thus, as regards the cause of the PAT gradient, other factors besides the LaPIN1 gradient must be considered. For example, auxin carriers such as some phosphoglycoproteins (PGP), are also expressed differentially along the Arabidopsis hypocotyl and specific PIN-PGP pairings influence PAT by modulating the rates of cellular auxin movement.7 The pathway (symplast or apoplast) and mechanism of LAM remains unknown. Although alternative mechanisms have been proposed,26 a previous study in lupin15 suggested that LAM is a diffusive process and that the IAA metabolism observed in the outer tissues might generate the radial gradient of auxin necessary for the maintenance of its lateral flow. It is thought that this metabolism of IAA occurs once the hormonal action is completed.25,27 Although NPA does not inhibit LAM, the involvement of auxin efflux carriers cannot be discarded. In fact, the role of PIN carriers in lateral auxin transport towards and from the stele has been described in the root.28 Other phytohormones besides auxin can modulate hypocotyl growth. Thus, the ethylene production rate, the 1-aminocyclopropane-1-carboxylic acid (ACC) content and the ACC oxidase activity decreased along the hypocotyl during the hypocotyl growth period.29 Sensitivity to exogenous ethylene varied during growth, the young apical region being less sensitive than the older basal region.30 Ethylene modified the cell growth pattern in the different tissues.31 The ethylene-induced lupin hypocotyl thickening was irreversible and mainly due to an increase in cell diameter. However, the inhibition of hypocotyl elongation produced by ethylene was reversible and involved irreversible inhibition of cell division and, paradoxically, stimulation of cell elongation to produce cells longer than those of the control.32Studies in Arabidopsis showed that the hypocotyl growth in both light- and dark-grown plants is a process driven by cross-talk between multiple hormones. Interactions between auxins, ethylene, gibberellins and brassinosteroids have been described.33,34 We think that the etiolated lupin hypocotyl remains a suitable model for confirming some of these results and for opening up new approaches in phytohormone research.  相似文献   

2.
3.
The transport and metabolism of indole-3-acetic acid (IAA) was studied in etiolated lupin (Lupinus albus L, cv. Multolupa) hypocotyls, following application of dual-isotope-labelled indole-3-acetic acid, [5-3H]IAA plus [1-14C]IAA, to decapitated plants. To study the radial distribution of the transported and metabolized IAA, experiments were carried out with plants in which the stele was separated from the cortex by a glass capillary. After local application of labelled IAA to the cortex, radioactivity remained immobilized in the cortex, near the application point, showing that polar transport cannot occur in the outer tissues. However, following application of IAA to the stele, radioactivity appeared in the cortex in those hypocotyl sections below the first 1 cm (in which the capillary was inserted), and the basipetal IAA movement was similar to that observed after application of IAA to the complete cut surface. In both assays, longitudinal distribution of 14C and 3H in the stele outside the first 1 cm was positively correlated with that of cortex, indicating that there was a lateral migration of IAA from the transport pathway (in the stele) to the outer tissues and that this migration depended on the amount of IAA in the stele. Both tissues (stele and cortex) exhibited intensive IAA metabolism, decarboxylation being higher in the stele than in the cortex while IAA conjugation was the opposite. Decapitation of the seedlings caused a drastic reduction of hypocotyl growth in the 24 h following decapitation, unless the hypocotyls were treated apically with IAA. Thus, exogenous IAA, polarly transported, was able to substitute the endogenous source of auxin (cotyledons plus meristem) to permit hypocotyl growth. It is proposed that IAA escapes from the transporting cells (in the stele) to the outer tissues in order to reach the growth-responsive cells. The IAA metabolism in the outer tissues could generate the IAA gradient necessary for the maintenance of its lateral flow, and consequently the auxin-induced cell elongation.  相似文献   

4.
The involvement of polar auxin transport (PAT) on the growth of light-grown seedlings and rooting is generally accepted, while the role of auxin and PAT on the growth of dark-grown seedlings is subject to controversy. To further investigate this question, we have firstly studied the influence of NPA, a known inhibitor of PAT, on the rooting and growth of etiolated Lupinus albus hypocotyls. Rooting was inhibited when the basal ends of de-rooted seedlings were immersed in 100 micro m NPA but was partially restored after immersion in NPA + auxin. However, NPA applied to de-rooted seedlings or the roots of intact seedlings did not inhibit hypocotyl growth. It was taken up and distributed along the organ, and actually inhibited the basipetal transport of ((3)H)-IAA applied to isolated hypocotyl sections. Since the apex is the presumed auxin source for hypocotyl growth and rooting, and the epidermis is considered the limiting factor in auxin-induced growth, the basipetal and lateral auxin movement (LAM) after application of ((3)H)-IAA to decapitated seedlings were studied, in an attempt to evaluate the role of PAT and LAM in the provision of auxin to competent cells for growth and rooting. Local application of ((3)H)-IAA to the stele led to the basipetal transport of auxin in this tissue, but the process was drastically reduced when roots were immersed in NPA since no radioactivity was detected below the apical elongation region of the hypocotyl. LAM from the stele to the cortex and the epidermis occurred during basipetal transport, since radioactivity in these tissues increased as transport time progressed. Radioactivity on a per FW basis in the epidermis was 2-4 times higher than in the cortex, which suggests that epidermal cells acted as a sink for LAM. NPA did not inhibit LAM along the elongation region. These results suggest that while PAT was essential for rooting, LAM from the PAT pathway to the auxin-sensitive epidermal cells could play a key role in supplying auxin for hypocotyl elongation in etiolated lupin seedlings.  相似文献   

5.
Cucurbit seedlings potentially develop a peg on each side of the transition zone between the hypocotyl and root. Seedlings grown in a horizontal position suppress the development of the peg on the upper side of the transition zone in response to gravity. It is suggested that this suppression occurs due to a reduction in auxin levels to below the threshold value. We show in this study that the free indole-3-acetic acid (IAA) content is low, while IAA conjugates are significantly more abundant in the upper side of the transition zone of gravistimulated seedlings, compared to the lower side. A transient increase in mRNA of the auxin-inducible gene, CS-IAA1, was observed in the excised transition zone. The result suggests that the transition zone is a source of auxin. Cucumber seedlings treated with auxin-transport inhibitors exhibited agravitropic growth and developed a peg on each side of the transition zone. Auxin-transport inhibitors additionally caused an increase in CS-IAA1 mRNA accumulation at the transition zone, indicating a rise in intracellular auxin concentrations due to a block of auxin efflux. To study the involvement of the auxin transport system in peg formation, we isolated the cDNAs of a putative auxin influx carrier, CS-AUX1, and putative efflux carrier, CS-PIN1, from cucumber (Cucumis sativus L.) plants. Both genes (CS-AUX1 in particular) were auxin-inducible. Accumulation of CS-AUX1 and CS-PIN1 mRNAs was observed in vascular tissue, cortex and epidermis of the transition zone. A reduced level of CS-AUX1 mRNA was observed in the upper side of the gravistimulated transition zone, compared with the lower side. It is therefore possible that a balance in the activities of auxin influx and efflux carriers controls intracellular auxin concentration at the transition zone, which results in lateral placement of a peg in cucumber seedlings.Abbreviations HFCA 9-hydroxyfluorene-9-carboxylic acid - IAA indole-3-acetic acid - NPA 1-N-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

6.
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium.  相似文献   

7.
M. Sabater  F. Sabater 《Planta》1986,167(1):76-80
The pH-driven accumulation of [3H]indolyl-3-acetic acid (IAA) has been found to occur in membrane vesicles of lupin (Lupinus albus L.) hypocotyls. Most of this association of auxin with membranes is very sensitive to osmotic shock, high concentrations of permeable weak acids, incubation at 20° C for 20 min and to some ionophores. Long incubation times also depress the ability to accumulate radioactive IAA but this ability can be partially restored by a treatment that presumably reconstitutes the pH gradient across the membranes. Two specific inhibitors of auxin transport, N-1-naphtylphthalamic acid and 2,3,5-triiodobenzoic acid, stimulate net IAA uptake with an optimum at about 10-6 M (pH 5.0). At least two auxin carriers appear to be present in the lupin membrane vesicles. An uptake carrier seems to be saturated at 10-7 M IAA in the presence of N-1-naphtylphthalamic acid, but higher IAA concentrations are needed to saturate an efflux carrier. The uptake carrier also shows a high affinity for IAA and 2,4-dichlorophenoxyacetic acid and a low affinity for 1-naphthylacetic acid.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indolyl-3-acetic acid - NAA naphthalene-1-acetic acid - NIG nigeriein - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid - VAL valinomycin  相似文献   

8.
Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP‐binding cassette B19 (ABCB19) and PIN‐formed 3 (PIN3) are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood. Here, we report a critical role for clathrin in BL‐triggered, PIN3‐mediated asymmetric auxin distribution in hypocotyl phototropism. We show that unilateral BL induces relocalization of clathrin in the hypocotyl. Loss of clathrin light chain 2 (CLC2) and CLC3 affects endocytosis and lateral distribution of PIN3 thereby impairing BL‐triggered establishment of asymmetric auxin distribution and consequently, phototropic bending. Conversely, auxin efflux inhibitors N‐1‐naphthylphthalamic acid and 2,3,5‐triiodobenzoic acid affect BL‐induced relocalization of clathrin, endocytosis and lateralization of PIN3 as well as asymmetric distribution of auxin. These results together demonstrate an important interplay between auxin and clathrin function that dynamically regulates BL‐triggered hypocotyl phototropism in Arabidopsis.  相似文献   

9.
Phototropic hypocotyl bending in response to blue light excitation is an important adaptive process that helps plants to optimize their exposure to light. In Arabidopsis thaliana, phototropic hypocotyl bending is initiated by the blue light receptors and protein kinases phototropin1 (phot1) and phot2. Phototropic responses also require auxin transport and were shown to be partially compromised in mutants of the PIN-FORMED (PIN) auxin efflux facilitators. We previously described the D6 PROTEIN KINASE (D6PK) subfamily of AGCVIII kinases, which we proposed to directly regulate PIN-mediated auxin transport. Here, we show that phototropic hypocotyl bending is strongly dependent on the activity of D6PKs and the PIN proteins PIN3, PIN4, and PIN7. While early blue light and phot-dependent signaling events are not affected by the loss of D6PKs, we detect a gradual loss of PIN3 phosphorylation in d6pk mutants of increasing complexity that is most severe in the d6pk d6pkl1 d6pkl2 d6pkl3 quadruple mutant. This is accompanied by a reduction of basipetal auxin transport in the hypocotyls of d6pk as well as in pin mutants. Based on our data, we propose that D6PK-dependent PIN regulation promotes auxin transport and that auxin transport in the hypocotyl is a prerequisite for phot1-dependent hypocotyl bending.  相似文献   

10.
Deposition of ammonium (NH4+) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4+ is well studied, little is known about how shoot‐supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin‐responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN‐FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1‐dependent auxin transport from shoot to root.  相似文献   

11.
The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue‐native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo‐ and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1‐naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole‐3‐acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.  相似文献   

12.
C. Benning 《Planta》1986,169(2):228-237
The accumulation of [14C]indole-3-acetic acid (IAA), of [3H]tetra-phenyl phosphonium ion as a membrane potential probe, and of [14C]butyric acid as probe for pH gradients was studied with membrane vesicles from etiolated hypocotyls of Cucurbita pepo. Ion gradients (K+, H+) were applied in the presence and absence of specific ionophores e.g. valinomycin or carbonylcyanide m-chlorophenylhydrazone. In all cases tested, the accumulation of [14C]IAA equals neither potential probe nor pH-probe accumulation, but represents. an intermediate between the two. Auxin molecules seem to be taken up as positively charged ions and a pH gradient is required for accumulation. The uptake mechanism thus appears to be a specific, carrier-mediated cotransport of the anion of IAA and no less than two protons. The initial rates of auxin uptake by the saturable influx carrier, of permeation through the membrane, and of efflux by the phytotropin-affected efflux carrier were analysed.Abbreviations BA butyric acid - CCCP carbonylcyanid-3-chlorophenylhydrazone - CPD 2-carboxylphenyl-3-phenylpropan-1,3-dion - IAA indole-3-acetic acid - IAA anion of IAA - IAAH undissociated form of IAA - 2-NAA 2-naphthaleneacetic acid - NPA 1-N-naphthylphthalamic acid - TPP+ tetra-phenyl phosphonium ion  相似文献   

13.
Based upon the phenotype of young, dark-grown seedlings, a cytokinin-resistant mutant, cnr1, has been isolated, which displays altered cytokinin- and auxin-induced responses. The mutant seedlings possess short hypocotyls and open apical hooks (in dark), and display agravitropism, hyponastic cotyledons, reduced shoot growth, compact rosettes and short roots with increased adventitious branching and reduced number of root hairs. A number of these features invariably depend upon auxin/cytokinin ratio but the cnr1 mutant retains normal sensitivity towards auxin as well as auxin polar transport inhibitor, TIBA, although upregulation of primary auxin-responsive Aux/IAA genes is reduced. The mutant shows resistance towards cytokinin in hypocotyl/root growth inhibition assays, displays reduced regeneration in tissue cultures (cytokinin response) and decreased sensitivity to cytokinin for anthocyanin accumulation. It is thus conceivable that due to reduced sensitivity to cytokinin, the cnr1 mutant also shows altered auxin response. Surprisingly, the mutant retains normal sensitivity to cytokinin for induction of primary response genes, the type-A Arabidopsis response regulators, although the basal level of their expression was considerably reduced as compared to the wild-type. The zeatin and zeatin riboside levels, as estimated by HPLC, and the cytokinin oxidase activity were comparable in the cnr1 mutant and the wild-type. The hypersensitivity to red light (in hypocotyl growth inhibition assay), partial photomorphogenesis in dark, and hypersensitivity to sugars, are some other features displayed by the cnr1 mutant. The lesion in the cnr1 mutant has been mapped to the top of chromosome 1 where no other previously known cytokinin-resistant mutant has been mapped, indicating that the cnr1 mutant defines a novel locus involved in hormone, light and sugar signalling.  相似文献   

14.
15.
16.
Phytohormone auxin plays an indispensable role in the plethora of plant developmental process starting from the cell division, and cell elongation to morphogenesis. Auxins are transported to different parts of the plant by different sophisticated transporter molecules known as ‘auxin transporters’.There are four auxin transporter families that have been reported so far in the plant kingdom which includes AUX/LAX (AUXIN-RESISTANT1–LIKES), PIN (PIN-FORMED, auxin efflux carriers), ABCB ((ATP-binding cassette-B (ABCB)/P-glycoprotein (PGP)) and PILS (PIN-Likes). Auxin influx and efflux carriers are distributed in a polar fashion in the plasma membrane whereas ABCB and PILS are present in a non-polar fashion. Other than AUX/LAX, other auxin transporters harbor N-and C-terminal conserved domains along with a variable hydrophilic loop in the transmembrane domain. The AUX/LAX, ABCB and PIN transporters mediate long distance auxin transport whereas PILS and PIN5 protein involved in intracellular auxin homeostasis.  相似文献   

17.
Cyclanilide is a plant growth regulator that is registered for use in cotton at different stages of growth, to either suppress vegetative growth (in combination with mepiquat chloride) or accelerate senescence (enhance defoliation and boll opening, used in combination with ethephon). This research was conducted to study the mechanism of action of cyclanilide: its potential interaction with auxin (IAA) transport and signaling in plants. The activity of cyclanilide was compared with the activity of the auxin transport inhibitors NPA and TIBA. Movement of [3H]IAA was inhibited in etiolated corn coleoptiles by 10 μM cyclanilide, NPA, and TIBA, which demonstrated that cyclanilide affected polar auxin transport. Although NPA inhibited [3H]IAA efflux from cells in etiolated zucchini hypocotyls, cyclanilide had no effect. NPA did not inhibit the influx of IAA into cells in etiolated zucchini hypocotyls, whereas cyclanilide inhibited uptake 25 and 31% at 10 and 100 μM, respectively. Also, NPA inhibited the gravitropic response in tomato roots (85% at 1 μM) more than cyclanilide (30% at 1 μM). Although NPA inhibited tomato root growth (30% at 1 μM), cyclanilide stimulated root growth (165% of control at 5 μM). To further characterize cyclanilide action, plasma membrane fractions from etiolated zucchini hypocotyls were obtained and the binding of NPA, IAA, and cyclanilide studied. Cyclanilide inhibited the binding of [3H]NPA and [3H]IAA with an IC50 of 50 μM for both. NPA did not affect the binding of IAA, nor did IAA affect the binding of NPA. Kinetic analysis indicated that cyclanilide is a noncompetitive inhibitor of both NPA and IAA binding, with inhibition constants (K i) of 40 and 2.3 μM, respectively. These data demonstrated that cyclanilide interacts with auxin-regulated processes via a mechanism that is distinct from other auxin transport inhibitors. This research identifies a possible mechanism of action for cyclanilide when used as a plant growth regulator.  相似文献   

18.
Directional transport of the phytohormone auxin is established primarily at the point of cellular efflux and is required for the establishment and maintenance of plant polarity. Studies in whole plants and heterologous systems indicate that PIN-FORMED (PIN) and P-glycoprotein (PGP) transport proteins mediate the cellular efflux of natural and synthetic auxins. However, aromatic anion transport resulting from PGP and PIN expression in nonplant systems was also found to lack the high level of substrate specificity seen in planta. Furthermore, previous reports that PGP19 stabilizes PIN1 on the plasma membrane suggested that PIN-PGP interactions might regulate polar auxin efflux. Here, we show that PGP1 and PGP19 colocalized with PIN1 in the shoot apex in Arabidopsis thaliana and with PIN1 and PIN2 in root tissues. Specific PGP-PIN interactions were seen in yeast two-hybrid and coimmunoprecipitation assays. PIN-PGP interactions appeared to enhance transport activity and, to a greater extent, substrate/inhibitor specificities when coexpressed in heterologous systems. By contrast, no interactions between PGPs and the AUXIN1 influx carrier were observed. Phenotypes of pin and pgp mutants suggest discrete functional roles in auxin transport, but pin pgp mutants exhibited phenotypes that are both additive and synergistic. These results suggest that PINs and PGPs characterize coordinated, independent auxin transport mechanisms but also function interactively in a tissue-specific manner.  相似文献   

19.
In land plants polar auxin transport is one of the substantial processes guiding whole plant polarity and morphogenesis. Directional auxin fluxes are mediated by PIN auxin efflux carriers, polarly localized at the plasma membrane. The polarization of exocytosis in yeast and animals is assisted by the exocyst: an octameric vesicle‐tethering complex and an effector of Rab and Rho GTPases. Here we show that rootward polar auxin transport is compromised in roots of Arabidopsis thaliana loss‐of‐function mutants in the EXO70A1 exocyst subunit. The recycling of PIN1 and PIN2 proteins from brefeldin–A compartments is delayed after the brefeldin‐A washout in exo70A1 and sec8 exocyst mutants. Relocalization of PIN1 and PIN2 proteins after prolonged brefeldin‐A treatment is largely impaired in these mutants. At the same time, however, plasma membrane localization of GFP:EXO70A1, and the other exocyst subunits studied (GFP:SEC8 and YFP:SEC10), is resistant to brefeldin‐A treatment. In root cells of the exo70A1 mutant, a portion of PIN2 is internalized and retained in specific, abnormally enlarged, endomembrane compartments that are distinct from VHA‐a1‐labelled early endosomes or the trans‐Golgi network, but are RAB‐A5d positive. We conclude that the exocyst is involved in PIN1 and PIN2 recycling, and thus in polar auxin transport regulation.  相似文献   

20.
ARG1 (ALTERED RESPONSE TO GRAVITY) is required for normal root and hypocotyl gravitropism. Here, we show that targeting ARG1 to the gravity-perceiving cells of roots or hypocotyls is sufficient to rescue the gravitropic defects in the corresponding organs of arg1-2 null mutants. The cytosolic alkalinization of root cap columella cells that normally occurs very rapidly upon gravistimulation is lacking in arg1-2 mutants. Additionally, vertically grown arg1-2 roots appear to accumulate a greater amount of auxin in an expanded domain of the root cap compared with the wild type, and no detectable lateral auxin gradient develops across mutant root caps in response to gravistimulation. We also demonstrate that ARG1 is a peripheral membrane protein that may share some subcellular compartments in the vesicular trafficking pathway with PIN auxin efflux carriers. These data support our hypothesis that ARG1 is involved early in gravitropic signal transduction within the gravity-perceiving cells, where it influences pH changes and auxin distribution. We propose that ARG1 affects the localization and/or activity of PIN or other proteins involved in lateral auxin transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号