首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sucrase-isomaltase enzyme complex (pro-SI) is a type II integral membrane glycoprotein of the intestinal brush border membrane. Its synthesis commences with the isomaltase (IM) subunit and ends with sucrase (SUC). Both domains reveal striking structural similarities, suggesting a pseudo-dimeric assembly of a correctly folded and an enzymatically active pro-SI. The impact of each domain on the folding and function of pro-SI has been analyzed by individual expression and coexpression of the individual subunits. SUC acquires correct folding, enzymatic activity and transport competence and is secreted into the external milieu independent of the presence of IM. By contrast, IM persists as a mannose-rich polypeptide that interacts with the endoplasmic reticulum resident molecular chaperone calnexin. This interaction is disrupted when SUC is coexpressed with IM, indicating that SUC competes with calnexin for binding of IM. The interaction between SUC and the membrane-anchored IM leads to maturation of IM and blocks the secretion of SUC into the external milieu. We conclude that SUC plays a role as an intramolecular chaperone in the context of the pro-SI protein. To our knowledge all intramolecular chaperones so far identified are located at the N-terminal end. SUC is therefore the first C-terminally located intramolecular chaperone in mammalian cells.  相似文献   

2.
Naturally occurring mutants of membrane and secretory proteins are often associated with the pathogenesis of human diseases. Here, we describe the molecular basis of a novel phenotype of congenital sucrase-isomaltase deficiency (CSID), a disaccharide malabsorption disorder of the human intestine in which several structural features and functional capacities of the brush-border enzyme complex sucrase-isomaltase (SI) are affected. The cDNA encoding SI from a patient with CSID reveals a mutation in the isomaltase subunit of SI that results in the substitution of a cysteine by an arginine at amino acid residue 635 (C635R). When this mutation is introduced into the wild type cDNA of SI a mutant enzyme, SI(C635R), is generated that shows a predominant localization in the endoplasmic reticulum. Nevertheless, a definite localization of SI(C635R) in the Golgi apparatus and at the cell surface could be also observed. Epitope mapping with conformation-specific mAbs protease sensitivity assays, and enzymatic activity measurements demonstrate an altered folding pattern of SI(C635R) that is responsible for a substantially increased turnover rate and an aberrant sorting profile. Thus, SI(C635R) becomes distributed also at the basolateral membrane in contrast to wild type SI. Concomitant with the altered sorting pattern, the partial detergent extractability of wild type SI shifts to a complete detergent solubility with Triton X-100. The mutation has therefore affected an epitope responsible for the apical targeting fidelity of SI. Altogether, the combined effects of the C635R mutation on the turnover rate, function, polarized sorting, and detergent solubility of SI constitute a unique and novel pathomechanism of CSID.  相似文献   

3.
The temporal association between O-glycosylation and processing of N-linked glycans in the Golgi apparatus as well as the implication of these events in the polarized sorting of three brush border proteins has been the subject of the current investigation. O-Glycosylation of pro-sucrase-isomaltase (pro-SI), aminopeptidase N (ApN), and dipeptidyl peptidase IV (DPPIV) is drastically reduced when processing of the mannose-rich N-linked glycans is blocked by deoxymannojirimycin, an inhibitor of the Golgi-located mannosidase I. By contrast, O-glycosylation is not affected in the presence of swainsonine, an inhibitor of Golgi mannosidase II. The results indicate that removal of the outermost mannose residues by mannosidase I from the mannose-rich N-linked glycans is required before O-glycosylation can ensue. On the other hand, subsequent mannose residues in the core chain impose no sterical constraints on the progression of O-glycosylation. Reduction or modification of N- and O-glycosylation do not affect the transport of pro-SI, ApN, or DPPIV to the cell surface per se. However, the polarized sorting of two of these proteins, pro-SI and DPPIV, to the apical membrane is substantially altered when O-glycans are not completely processed, while the sorting of ApN is not affected. The processing of N-linked glycans, on the other hand, has no influence on sorting of all three proteins. The results indicate that O-linked carbohydrates are at least a part of the sorting mechanism of pro-SI and DPPIV. The sorting of ApN implicates neither O-linked nor N-linked glycans and is driven most likely by carbohydrate-independent mechanisms.  相似文献   

4.
Summary In vivo pulse-chase labeling of rabbit jejunum loops was used in conjunction with subcellular fractionation and quantitative immunoprecipitation to determine whether or not the newly synthesized aminopeptidase N transits through the basolateral membrane before it reaches the apical brush border, its final localization. The kinetics of the arrival of the newly synthesized enzyme in the Golgi complex, basolateral and brush border membrane fractions strongly suggest that on leaving the Golgi aminopeptidase N is transiently integrated into the basolateral domain before reaching the brush border.  相似文献   

5.
The isolation and purification of sucrase-isomaltase from brush border membrane is described and the physicochemical properties of the pure enzyme are discussed. Our present understanding of the mode of association of the intrinsic membrane protein sucrase-isomaltase with the brush border membrane will be the central point of this contribution. The assembly of sucrase-isomaltase into phospholipid bilayers has been reported to result in a model membrane system which resembles the "native" brush border membrane as regards the mode of lipid-protein interaction. The physicochemical properties of this reconstituted model membrane will be compared to the in vivo situation as represented by brush border membrane vesicles routinely isolated from small intestinal brush borders. The biosynthetic mechanism will be discussed.  相似文献   

6.
Immunoelectron microscopy was used to localize the brush border hydrolases sucrase-isomaltase (SI) and dipeptidylpeptidase IV (DPPIV) in the human colon carcinoma cell line Caco-2. Both enzymes were detected at the microvillar membrane, in small vesicles and multivesicular bodies (MVBs), and in lysosomal bodies. In addition, DPPIV was found in the Golgi apparatus, a variety of apical vesicles and tubules, and at the basolateral membrane. To investigate whether the hydrolases present in the lysosomal bodies were endocytosed from the apical membrane, endocytic compartments were marked with the endocytic tracer cationized ferritin (CF). After internalization from the apical membrane through coated pits, CF was first recovered in apical vesicles and tubules, and larger electronlucent vesicles (early endosomes), and later accumulated in MVBs (late endosomes) and lysosomal bodies. DPPIV was localized in a subpopulation of both early and late endocytic vesicles, which contained CF after 3 and 15 min of uptake, respectively. Also, internalization of the specific antibody against DPPIV and gold labeling on cryosections showed endocytosed DPPIV in both early and late endosomes. However, unlike CF, no accumulation of DPPIV was seen in MVBs or lysosomal bodies after longer chase times. The results indicate that in Caco-2 cells the majority of brush border hydrolases present in lysosomal bodies are not endocytosed from the brush border membrane. Furthermore, the labeling patterns obtained, suggest that late endosomes may be involved in the recycling of endocytosed DPPIV to the microvilli.  相似文献   

7.
The cellular localization of the human intestinal disaccharidase, sucrase-isomaltase, was visualized in ultrathin cryosections by the use of specific monoclonal antibodies [25] followed by protein A-gold. The principle site of immunoreaction concerned the microvillus membrane, which supports current concepts of the localization of these hydrolases. One antibody against sucrase-isomaltase also showed labeling of the Golgi apparatus, apical vesicles, and lysosomes, but not of the basolateral membrane. The labeling of the Golgi complex was uniform, suggesting the absence of accumulation of sucrase-isomaltase in cisternae during its passage through this organelle. Absence of labeling of the basolateral membrane appears to support the view that newly synthesized sucrase-isomaltase is transferred directly from the Golgi complex to the microvillus membrane, bypassing the basolateral membrane. However, the results do not exclude the possibility of a very rapid passage through the basolateral membrane. A substantial fraction of the sucrase-isomaltase occurred in lysosomes, which indicates that this organelle plays a major role in the catabolism of microvillar hydrolases. Transport of sucrase-isomaltase to lysosomes might occur by endocytosis or via the crinophagic pathway. The latter was previously postulated to reflect a regulatory mechanism at the post-Golgi level for the surface expression of microvillar membrane proteins.  相似文献   

8.
Cell culture systems, in particular Caco-2, and sucrase-isomaltase deficiency in humans are attractive models to study exocytic protein traffic in absorptive intestinal epithelial cells. Transport from ER to and through the Golgi is asynchronous and may depend on protein folding rather than oligomerization. Apical and basolateral proteins are sorted both intracellularly and from the basolateral membrane. A model is presented for the sorting of apical and basolateral proteins. Brush border proteins in lysosomes mainly originate from the Golgi and may reflect a regulatory or quality control mechanism. Apical transport and transcytosis but not basolateral transport are facilitated by microtubules.  相似文献   

9.
Intestinal brush border enzymes, including aminopeptidase N and sucrase-isomaltase, are associated with "rafts" (membrane microdomains rich in cholesterol and sphingoglycolipids). To assess the functional role of rafts in the present work, we studied the effect of cholesterol depletion on apical membrane trafficking in enterocytes. Cultured mucosal explants of pig small intestine were treated for 2 h with the cholesterol sequestering agent methyl-beta-cyclodextrin and lovastatin, an inhibitor of hydroxymethylglutaryl-coenzyme A reductase. The treatment reduced the cholesterol content >50%. Morphologically, the Golgi complex/trans-Golgi network was partially transformed into numerous 100-200 nm vesicles. By immunogold electron microscopy, aminopeptidase N was localized in these Golgi-derived vesicles as well as at the basolateral cell surface, indicating a partial missorting. Biochemically, the rates of the Golgi-associated complex glycosylation and association with rafts of newly synthesized aminopeptidase N were reduced, and less of the enzyme had reached the brush border membrane after 2 h of labeling. In contrast, the basolateral Na(+)/K(+)-ATPase was neither missorted nor raft-associated. Our results implicate the Golgi complex/trans-Golgi network in raft formation and suggest a close relationship between this event and apical membrane trafficking.  相似文献   

10.
The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells (Quaroni, A., and K. J. Isselbacher. 1981. J. Natl. Cancer Inst. 67:1353-1362) was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit (Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush. 1985. Kidney Int. 28:899-913), was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.  相似文献   

11.
Trehalase found to be associated with the brush border membrane vesicles and the Ca2+ aggregated basolateral membrane vesicles were purified to homogeneity. They were found to differ in their molecular weight, subunit structure, heal stability, N-terminal residues, amino acid composition and also the active site residues. Chemical modification showed the presence of a histidine and tyrosine at the active site of brush border membrane vesicle trehalase and two histidines at the active site of basolateral membrane vesicle.  相似文献   

12.
The heterogenous expression of brush border membrane hydrolases by the human enterocyte-like Caco-2 cell line during morphological and functional differentiation in vitro was investigated at the cellular level. Indirect immunofluorescence revealed that the heretogenous (“mosaic”) expression of sucrase-isomaltase, lactase, aminopeptidase N, and alkaline phosphatase was, in fact, transient in nature. The labeling indexes for each hydrolase gradually increased during culture at postconfluence in order to reach a maximum (≥90%) after 30 days, concomitant with an upregulation of their respective protein expression levels. In contrast, dipeptidylpeptidase IV labeling remained relatively constant. Backscattered electron imaging analysis in midstage (12 days postconfluence) monolayers demonstrated a lack of correlation between brush border membrane development and expression of each enzyme studied. Moreover, double immunostaining revealed that none of the other four hydrolases correlated directly with sucrase-isomaltase expression. Finally, immunodetection for the proliferation-associated antigen Kl-67 revealed a transient mosaic pattern of proliferation which was inversely related to Caco-2 cell differentiation. These data indicate that enterocytic differentiation-related (as well as proliferation-related) gene expression in Caco-2 cells is regulated but uncoordinated at the cellular level, suggesting that an overall control mechanism is lacking. © 1996 Wiley-Liss, Inc.  相似文献   

13.
A striking feature of phenotype II in congenital sucrase-isomaltase deficiency is the retention of the brush border protein sucrase-isomaltase (SI) in the cis-Golgi. This transport block is the consequence of a glutamine to proline substitution at amino acid residue 1098 of the sucrase subunit. Here we provide unequivocal biochemical and confocal data to show that the SI(Q/P) mutant reveals characteristics of a temperature-sensitive mutant. Thus, correct folding, competent intracellular transport, and full enzymatic activity can be partially restored by expression of the mutant SI(Q/P) at the permissive temperature of 20 degrees C instead of 37 degrees C. The acquisition of normal trafficking and function appears to utilize several cycles of anterograde and retrograde steps between the endoplasmic reticulum and the Golgi implicating the molecular chaperones calnexin and heavy chain-binding protein. The data presented in this communication are to our knowledge the first to implicate a temperature-sensitive mutation in an intestinal enzyme deficiency or an intestinal disorder.  相似文献   

14.
Hybridization analysis of mRNA with a cDNA probe for human sucrase-isomaltase, pulse-chase experiments with L-[35S]-methionine followed by SDS-PAGE, and immunofluorescence detection of sucrase-isomaltase were used to analyze the level(s) at which forskolin interferes with the expression of the enzyme in Caco-2 cells in culture. Three effects are observed in Caco-2 cells treated with forskolin: 1) a marked decrease in the level of sucrase-isomaltase mRNA, 2) a marked decrease in the biosynthesis of the enzyme without any alteration of its stability, and 3) an almost total inhibition of its transport to the brush border membrane. All three effects are reversible when the drug is removed from the culture medium, though this reversibility is asynchronous: transport to the brush border membrane resumes after 24 h, sucrase-isomaltase mRNA levels are back to the normal after 5 days, whereas the biosynthesis of the enzyme, although increasing progressively, remains lower than in control cells, even 10 days after removal of the drug. The possibility that some effects are directly dependent on cAMP and others a consequence of changes in glucose metabolism is discussed.  相似文献   

15.
To establish the segmental, cellular, and subcellular localization of AQP7 in rat and mouse kidney, we used RT-PCR, immunocytochemical, and immunoblotting approaches. RT-PCR of rat and mouse kidney zones revealed AQP7 mRNA in cortex and outer stripe of the outer medulla. RT-PCR on microdissected nephron segments revealed AQP7 mRNA in proximal convoluted and straight tubules. Immunoblotting using peptide-derived rabbit antibodies to either rat or mouse AQP7 revealed a 28-kDa band in kidney and testes from rat and mouse, respectively. Immunocytochemistry revealed strong AQP7 labeling of segment 3 proximal tubules and weaker labeling of proximal convoluted tubules in both rat and mouse kidneys. The labeling was almost exclusively confined to the brush border with no basolateral labeling. No labeling was observed of thin descending limbs or collecting duct. Immunolabeling controls were negative. The presence of AQP7 in the proximal tubule brush border indicates a role of AQP7 in proximal tubule water reabsorption.  相似文献   

16.
Lysosomes of intestinal epithelial cells in vivo and in culture display strong immunoreactivity with monoclonal antibodies against various brush border enzymes as visualized by immunoelectron microscopy. Novel subcellular fractionation procedures were developed to study, by the pulse-chase technique and by internalization assays, the pathway along which two microvillar hydrolases, sucrase-isomaltase and dipeptidylpeptidase IV, are transported to lysosomes in the differentiated colon adenocarcinoma cell line Caco-2. 7-9% of metabolically labeled sucrase-isomaltase of dipeptidylpeptidase IV were present in lysosomes after 7-8 h of chase as intact complex-glycosylated molecules. Appearance of these enzymes in lysosomes was biphasic. Endocytosis studies with radioiodinated antienzyme monoclonal antibodies (monovalent antigen-binding fragments) and by means of cell surface iodination revealed only slow transport of the enzymes to lysosomes at a low level. However, both enzymes were internalized with different efficiencies and recycled to the cell surface via endosomes. These results suggest that in Caco-2 cells a significant amount of newly synthesized sucrase-isomaltase and dipeptidylpeptidase IV is directly imported into lysosomes bypassing the brush border membrane.  相似文献   

17.
The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internalization. CTB binding and endocytosis were performed in organ-cultured pig mucosal explants and studied by fluorescence microscopy, immunogold electron microscopy, and biochemical fractionation. By fluorescence microscopy CTB, bound to the microvillar membrane at 4 degrees C, was rapidly internalized after the temperature was raised to 37 degrees C. By immunogold electron microscopy CTB was seen within 5 min at 37 degrees C to induce the formation of numerous clathrin-coated pits and vesicles between adjacent microvilli and to appear in an endosomal subapical compartment. A marked shortening of the microvilli accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border and is internalized by a cholesterol-independent but clathrin-dependent endocytosis. In addition to GM(1), sucrase-isomaltase may act as a receptor for CTB.  相似文献   

18.
The plasma membrane of enterocytes comprises two structurally and functionally distinct domains. These are the apical brush border, containing digestive hydrolases and glycocalyx, and the basolateral domain, characterized by other specific markers. Using a fast and easy subcellular fractionation, we purified four membrane vesicle fractions from rabbit small intestinal mucosa: brush border, basolateral, rough endoplasmic reticulum and Golgi + smooth endoplasmic reticulum. Using flow cytometry, the fluorescence polarization of diphenylhexatriene was determined in brush border and in basolateral + Golgi + smooth endoplasmic reticulum membrane fractions in order to investigate changes in the membrane fluidity of both fractions and to compare the results obtained with those of spectroscopic techniques. Moreover, it was possible with flow cytometry to detect and quantify basolateral and brush border markers by using polyclonal and monoclonal antibodies. The advantages of flow cytometry in the detection of brush border membrane markers found in small amounts in the basolateral domain are discussed. Finally, flow cytometry holds great promise for the analysis and sorting of subcellular fractions.  相似文献   

19.
The impaired sorting profile to the apical membrane of human intestinal sucrase-isomaltase is the underlying cause in the pathogenesis of a novel phenotype of intestinal congenital sucrase-isomaltase deficiency. Molecular characterization of this novel phenotype reveals a point mutation in the coding region of the sucrase-isomaltase (SI) gene that results in an amino acid substitution of a glutamine by arginine at residue 117 of the isomaltase subunit. This substitution is located in a domain revealing features of a trefoil motif or a P-domain in immediate vicinity of the heavily O-glycosylated stalk domain. Expression of the mutant SI phenotype in epithelial Madin-Darby canine kidney cells reveals a randomly targeted SI protein to the apical and basolateral membranes confirming an exclusive role of the Q117R mutation in generating this phenotype. Unlike wild type SI, the mutant protein is completely extractable with Triton X-100 despite the presence of O-glycans that serve in the wild type protein as an apical sorting signal and are required for the association of SI with detergent-insoluble lipid microdomains. Obviously the O-glycans are not adequately recognized in the context of the mutant SI, most likely due to altered folding of the P-domain that ultimately affects the access of the O-glycans to a putative sorting element.  相似文献   

20.
The brush border of pig small intestine is a local hotspot for β-galactoside-recognizing lectins, as evidenced by its prominent labeling with fluorescent lectin PNA. Previously, galectins 3-4, intelectin, and lectin-like anti-glycosyl antibodies have been localized to this important body boundary. Together with the membrane glycolipids these lectins form stable lipid raft microdomains that also harbour several of the major digestive microvillar enzymes. In the present work, we identified a lactose-sensitive 14-kDa protein enriched in a microvillar detergent resistant fraction as galectin-2. Its release from closed, right-side-out microvillar membrane vesicles shows that at least some of the galectin-2 resides at the lumenal surface of the brush border, indicating that it plays a role in the organization/stabilization of the lipid raft domains. Galectin-2 was released more effectively from the membrane by lactose than was galectin-4, and surprisingly, it was also released by the noncanonical disaccharides sucrose and maltose. Furthermore, unlike galectin-4, galectin-2 was preferentially coimmunoisolated with sucrase-isomaltase rather than with aminopeptidase N. Together, these results show that the galectins are not simply redundant proteins competing for the same ligands but rather act in concert to ensure an optimal cross-linking of membrane glycolipids and glycoproteins. In this way, they offer a maximal protection of the brush border against exposure to bile, pancreatic enzymes and pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号