首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The capsular polysaccharide from E. Coli, strain K5 composed of ...-->4)beta-D-GlcA(1-->4)alpha-D-GlcNAc(1-->4)beta-D-GlcA (1-->..., chemically modified K5 polysaccharides, bearing sulfates at C-2 and C-6 of the hexosamine moiety and at the C-2 of the glucuronic acid residues as well as 2-O desulfated heparin were used as substrates to study the specificity of heparitinases I and II and heparinase from Flavobacterium heparinum. The natural K5 polysaccharide was susceptible only to heparitinase I forming deltaU-GlcNAc. N-deacetylated, N-sulfated K5 became susceptible to both heparitinases I and II producing deltaU-GlcNS. The K5 polysaccharides containing sulfate at the C-2 and C-6 positions of the hexosamine moiety and C-2 position of the glucuronic acid residues were susceptible only to heparitinase II producing deltaU-GlcNS,6S and deltaU,2S-GlcNS,6S respectively. These combined results led to the conclusion that the sulfate at C-6 position of the glucosamine is impeditive for the action of heparitinase I and that heparitinase II requires at least a C-2 or a C-6 sulfate in the glucosamine residues of the substrate for its activity. Iduronic acid-2-O-desulfated heparin was susceptible only to heparitinase II producing deltaU-GlcNS,6S. All the modified K5 polysaccharides as well as the desulfated heparin were not substrates for heparinase. This led to the conclusion that heparitinase II acts upon linkages containing non-sulfated iduronic acid residues and that heparinase requires C-2 sulfated iduronic acid residues for its activity.  相似文献   

2.
The purification of two heparitinases and a heparinase, in high yields from Flavobacterium heparinum was achieved by a combination of molecular sieving and cation-exchange chromatography. Heparinase acts upon N-sulfated glucosaminido-L-iduronic acid linkages of heparin. Substitution of N-sulfate by N-acetyl groups renders the heparin molecule resistant to degradation by the enzyme. Heparitinase I acts on N-acetylated or N-sulfated glucosaminido-glucuronic acid linkages of the heparan sulfate. Sulfate groups at the 6-position of the glucosamine moiety of the heparan sulfate chains seem to be impeditive for heparitinase I action. Heparitinase II acts upon heparan sulfate producing disulfated, N-sulfated and N-acetylated-6-sulfated disaccharides, and small amounts of N-acetylated disaccharide. These and other results suggest that heparitinase II acts preferentially upon N,6-sulfated glucosaminido-glucuronic acid linkages. The total degradation of heparan sulfate is only achieved by the combined action of both heparitinases. The 13C NMR spectra of the disaccharides formed from heparan sulfate and a heparin oligosaccharide formed by the action of the heparitinases are in accordance to the proposed mode of action of the enzymes. Comparative studies of the enzymes with the commercially available heparinase and heparitinase are described.  相似文献   

3.
With the aid of heparinase and heparitinases from Flavobacterium heparinum and 13C and IH NMR spectroscopy it was shown that the heparan sulphate isolated from the brine shrimp Artemia franciscana exhibits structural features intermediate between those of mammalian heparins and heparan sulphates. These include an unusually high degree of N-sulphation (with corresponding very low degree of N-acetylation), a relatively high content of iduronic acid residues (both unsulphated and 2-O-sulphated) and a relatively low degree of 6-O-sulphation of the glucosamine residues. The major sequences (glucuronic acid-->N-sulphated glucosamine and glucuronic acid-->N, 6-disulphated glucosamine) are most probably arranged in blocks. Although exhibiting negligible anticlotting activity in the APTT and anti-factor Xa assays the A. franciscana heparan sulphate has a high heparin cofactor-II activity (about 1/3 that of heparin).  相似文献   

4.
The analyses of the products formed from heparitin sulfates by the action of two heparitinases and a heparinase from Flavorbacterium heparinum is reported. Heparitin sulfates A and B are degraded by heparitinase I yielding two disaccharides, one of them composed of N-acetylucosamine and an unsaturated uronic, joined by alpha(1 lead to 4) linkage, and the other, with the same composition but with an O-sulfate at the hexosamine moiety. A third disaccharide is also formed from heparitin sulfate B, by the action of the same enzyme, composed of glucosamine N-sulfate and an unsaturated uronic acid joined probably by alpha(1 lead to 4) linkage. Besides these three disaccharides, heparitin sulfate B yields, by the action of heparitinase I, an oligosaccharide (with an average molecular weight of 6000) which is completely degraded by the heparitinase II yielding a disaccharide composed of glucosamine 2,6-disulfate and unsaturated uronic acid. All the disaccharides are further degraded by alpha-glycuronidase from Flavobacterium heparinum yielding the respective monosaccharides. Based on these and other analyses the possible structures of the heparitin sulfates are proposed.  相似文献   

5.
The analyses of the products formed from heparitin sulfates by the action of two heparitinases and a heparinase from Flavobacterium heparinum is reported. Heparitin sulfates A and B are degraded by heparitinase I yielding two disaccharides, one of them composed of N-acetylglucosamine and an unsaturated uronic, joined by α(1 → 4) linkage, and the other, with the same composition but with an O-sulfate at the hexosamine moiety. A third disaccharide is also formed from heparitin sulfate B, by the action of the same enzyme, composed of glucosamine N-sulfate and an unsaturated uronic acid joined probably by α(1 → 4) linkage. Besides these three disaccharides, heparitin sulfate B yields, by the action of heparitinase I, an oligosaccharide (with an average molecular weight of 6000) which is completely degraded by the heparitinase II yielding a disaccharide composed of glucosamine 2,6-disulfate and unsaturated uronic acid. All the disaccharides are further degraded by α-glycuronidase from Flavobacterium heparinum yielding the respective monosaccharides. Based on these and other analyses the possible structures of the heparitin sulfates are proposed.  相似文献   

6.
Bacterial chondroitinases and heparitinases are potentially useful tools for structural studies of chondroitin sulfate and heparin/heparan sulfate. Substrate specificities of Flavobacterium chondroitinase C, as well as heparitinases I and II, towards the glycosaminoglycan-protein linkage region -HexA-HexNAc-GlcA-Gal-Gal-Xyl-Ser (where HexA represents glucuronic acid or iduronic acid and HexNAc represents N-acetylgalactosamine or N-acetylglucosamine) were investigated using various structurally defined oligosaccharides or oligosaccharide-serines derived from the linkage region. In the case of oligosaccharide-serines, they were labeled with a chromophore dimethylaminoazobenzenesulfonyl chloride (DABS-Cl), which stably reacted with the amino group of the serine residue and rendered high absorbance for microanalysis. Chondroitinase C cleaved the GalNAc bond of the pentasaccharides or hexasaccharides derived from the linkage region of chondroitin sulfate chains and tolerated sulfation of the C-4 or C-6 of the GalNAc residue and C-6 of the Gal residues, as well as 2-O-phosphorylation of the Xyl residue. In contrast, it did not act on the GalNAc-GlcA linkage when attached to a 4-O-sulfated Gal residue. Heparitinase I cleaved the innermost glucosaminidic bond of the linkage region oligosaccharide-serines of heparin/heparan sulfate irrespective of substitution by uronic acid, whereas heparitinase II acted only on the glucosaminidic linkages of the repeating disaccharide region, but not on the innermost glucosaminidic linkage. These defined specificities of chondroitinase C, as well as heparitinases I and II, will be useful for preparation and structural analysis of the linkage oligosaccharides.  相似文献   

7.
Several commerical batches of heparitin sulfate extracted from beef lung tissue were fractionated into at least four distinct mucopolysaccharides by a combination of polyacrylamide and agarose gel electrophoresis. The four heparitin sulfates (A, B, C and D) were distinguished from each other and from heparin by several physical and chemical properties such as electrophoretic migration, molecular weight, presence of N-acetyl, N- and )-sulfate residues, optical rotation and enzymatic degradation. Of particular significance was the isolation of a heparitin sulfate (heparitin sulfate C) with a homogeneous molecular weight.  相似文献   

8.
A natural low molecular weight heparin (8.5 kDa), with an anticoagulant activity of 95 IU/mg by the USP assay, was isolated from the shrimp Penaeus brasiliensis. The crustacean heparin was susceptible to both heparinase and heparitinase II from Flavobacterium heparinum forming tri- and di-sulfated disaccharides as the mammalian heparins. (13)C and (1)H NMR spectroscopy revealed that the shrimp heparin was enriched in both glucuronic and non-sulfated iduronic acid residues. The in vitro anticlotting activities in different steps of the coagulation cascade have shown that its anticoagulant action is mainly exerted through the inhibition of factor Xa and heparin cofactor II-mediated inhibition of thrombin. The shrimp heparin has also a potent in vivo antithrombotic activity comparable to the mammalian low molecular weight heparins.  相似文献   

9.
A preparation of porcine stage 14 intestinal heparin, which contains Ser as a predominant amino acid, was used for isolation of the carbohydrate-protein linkage region of heparin. Two glycoserines were isolated in a molar ratio of 96:4 after an exhaustive digestion with a mixture of bacterial heparinase and heparitinases. Their structures were determined by composition analysis, heparitinase digestion, co-chromatography with an authentic glycoserine on high performance liquid chromatography, and by 500-MHz one- and two-dimensional 1H NMR spectroscopy. The structure of the major one is delta GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser and that of the minor is delta GlcA beta 1-4GlcNAc(6-O-sulfate) alpha 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl beta 1-O-Ser. The novel 6-O-sulfated GlcNAc residue was demonstrated to occur in the vicinity of the carbohydrate-protein linkage region. The Gal residues were nonsulfated, in contrast to the sulfated Gal structures recently discovered in the carbohydrate-protein linkage region of chondroitin sulfate proteoglycans. The structural features are discussed in relation to biosynthetic mechanisms of the heparin glycosaminoglycans.  相似文献   

10.
Heparin stimulates 2-3-fold, in a concentration-dependent manner, the synthesis of heparan sulfate secreted by cultured endothelial cells. The increase in synthetic rate takes place immediately after exposure of the cells to heparin, affects only heparan sulfate, and is specific for the endothelial cell. No stimulation by other glycosaminoglycans was observed. Analysis of the disaccharide products formed by the action of heparitinases reveals a higher degree of sulfation of the uronic acid residues in the heparan sulfate of cells exposed to heparin.  相似文献   

11.
Heparin lyase I (heparinase I) specifically depolymerizes heparin, cleaving the glycosidic linkage next to iduronic acid. Here, we show the crystal structures of heparinase I from Bacteroides thetaiotaomicron at various stages of the reaction with heparin oligosaccharides before and just after cleavage and product disaccharide. The heparinase I structure is comprised of a β-jellyroll domain harboring a long and deep substrate binding groove and an unusual thumb-resembling extension. This thumb, decorated with many basic residues, is of particular importance in activity especially on short heparin oligosaccharides. Unexpected structural similarity of the active site to that of heparinase II with an (α/α)6 fold is observed. Mutational studies and kinetic analysis of this enzyme provide insights into the catalytic mechanism, the substrate recognition, and processivity.  相似文献   

12.
A novel type of heparinase (heparin lyase, no EC number) has been purified from Bacteroides stercoris HJ-15, isolated from human intestine, which produces three kinds of heparinases. The enzyme was purified to apparent homogeneity by a combination of QAE-cellulose, DEAE-cellulose, CM-Sephadex C-50, hydroxyapatite, and HiTrap SP chromatographies with a final specific activity of 19.5 mmol/min/mg. It showed optimal activity at pH 7.2 and 45 degrees C and the presence of 300 mM KCl greatly enhanced its activity. The purified enzyme activity was inhibited by Cu(2+), Pb(2+), and some agents that modify histidine and cysteine residues, and activated by reducing agents such as dithiothreitol and 2-mercaptoethanol. This purified Bacteroides heparinase is an eliminase that shows its greatest activity on bovine intestinal heparan sulfate, and to a lesser extent on porcine intestinal heparan sulfate and heparin. This enzyme does not act on acharan sulfate but de-O-sulfated acharan sulfate and N-sulfoacharan sulfate were found to be poor substrates. The substrate specificity of this enzyme is similar to that of Flavobacterial heparinase II. However, an internal amino acid sequence of the purified Bacteroides heparinase shows significant (73%) homology to Flavobacterial heparinase III and only 43% homology to Flavobacterial heparinase II. These findings suggest that the Bacteroidal heparinase is a novel enzyme degrading GAGs.  相似文献   

13.
Heparitin sulfate fractions with a large range in sulfate content were subjected to degradation by Flavobacterium heparinase and by nitrous acid. The products obtained were fractionated by chromatography, characterized, and used to arrive at tentative structures for these complex polysaccharides. The heparitin sulfate chains examined appear to be composed of: 1. uninterrupted blocks of N-acetylglucosamine containing disaccharides; 2. larger blocks with a molecular weight range of 5000 to 6000 which include the N-acetyl block but do not contain heparinase sensitive linkages; 3. segments containing mainly areas where N-acetyl, N-sulfate and some disulfated units alternate in the chain. The size and arrangement of these polymer segments seem to vary with the sulfate content of a particular heparitin sulfate. For instance, the polysaccharides with the highest degree of sulfation do not appear to contain N-acetyl blocks of significant size.  相似文献   

14.
Sulfated glycosaminoglycans were isolated from 23 species of 13 phyla of invertebrates and characterized by their electrophoretic migration in three different buffer systems coupled with enzymatic degradation using bacterial heparinase, heparitinases and chondroitinase AC. Heparan sulfate is a ubiquitous compound present in all species analyzed whereas chondroitin sulfate was present in 20 species and heparin-like compounds in 12 species of the invertebrates. The heparin-like compounds were purified from the echinoderm Mellita quinquisperforata (sand dollar) and the crustacean Ucides cordatus (crab) with anticoagulant activities of 60 and 52 IU/mg, respectively. Degradation of these heparins with heparinase produced significant amounts of the trisulfated disaccharide typical of mammalian heparins. This was confirmed by 13C-NMR spectroscopy of the crab heparin. An updated phylogenetic tree of the distribution of sulfated glycosaminoglycans in the animal kingdom is also presented.  相似文献   

15.
Heparinase II depolymerizes heparin and heparan sulfate glycosaminoglycans, yielding unsaturated oligosaccharide products through an elimination degradation mechanism. This enzyme cleaves the oligosaccharide chain on the nonreducing end of either glucuronic or iduronic acid, sharing this characteristic with a chondroitin ABC lyase. We have determined the first structure of a heparin-degrading lyase, that of heparinase II from Pedobacter heparinus (formerly Flavobacterium heparinum), in a ligand-free state at 2.15 A resolution and in complex with a disaccharide product of heparin degradation at 2.30 A resolution. The protein is composed of three domains: an N-terminal alpha-helical domain, a central two-layered beta-sheet domain, and a C-terminal domain forming a two-layered beta-sheet. Heparinase II shows overall structural similarities to the polysaccharide lyase family 8 (PL8) enzymes chondroitin AC lyase and hyaluronate lyase. In contrast to PL8 enzymes, however, heparinase II forms stable dimers, with the two active sites formed independently within each monomer. The structure of the N-terminal domain of heparinase II is also similar to that of alginate lyases from the PL5 family. A Zn2+ ion is bound within the central domain and plays an essential structural role in the stabilization of a loop forming one wall of the substrate-binding site. The disaccharide binds in a long, deep canyon formed at the top of the N-terminal domain and by loops extending from the central domain. Based on structural comparison with the lyases from the PL5 and PL8 families having bound substrates or products, the disaccharide found in heparinase II occupies the "+1" and "+2" subsites. The structure of the enzyme-product complex, combined with data from previously characterized mutations, allows us to propose a putative chemical mechanism of heparin and heparan-sulfate degradation.  相似文献   

16.
Heparitin sulfate fractions with a large range in sulfate content were subjected to degradation by Flavobacterium heparinase and by nitrous acid. The products obtained were fractionated by chromatography, characterized, and used to arrive at tentative structures for these complex polysaccharides. The heparitin sulfate chains examined appear to be composed of: 1. uninterrupted blocks of N-acetylglucosamine containing disaccharides; 2. larger blocks with a molecular weight range of 5000 to 6000 which include the N-acetyl block but do not contain heparinase sensitive linkages; 3. segments containing mainly areas where N-acetyl, N-sulfate and some disulfated units alternate in the chain.The size and arrangement of these polymer segments seem to vary with the sulfate content of a particular heparitin sulfate. For instance, the polysaccharides with the highest degree of sulfation do not appear to contain N-acetyl blocks of significant size.  相似文献   

17.
Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics.  相似文献   

18.
A type of heparinase (heparin lysase, no EC number) was isolated from the periplasmic space of a novel species of Sphingobacterium by three-step osmotic shock. It was further purified to apparent homogeneity by a combination of SP-sepharose and Source 30S chromatographies with a final specific activity of 17.6 IU/mg protein and purification factor of 13-fold. MALDI-TOF mass spectrum of the purified heparinase gave a molecular mass of 75,674 Da of the native enzyme. Peptide mass spectrum showed poor homogeneity with the database in the peptide bank. Inhibition of the enzyme activity by N-acetylimidazole indicated that tyrosine residues were necessary for enzyme activity. K(m) and V(max) of the heparinase for de-o-sulfated-N-acetyl heparin were 42 micro M and 166 microM/min/mg protein, respectively. The heparinase showed similar activity on both heparin and heparan sulfate, except for the heparin from bovine lung. The heparinase exhibited only 8.3% of the activity when de-N-sulfated heparin was used as the substrate, but N-acetylation of the de-N-sulfated heparin restored the activity to 78.4%. Thus modification of N-site in heparin structure was favorable for heparinase activity. On the other hand, de-o-sulfation in heparin showed positive effects on the heparinase activity, since the enzyme activity for N-acetyl-de-o-sulfated heparin was increased by 150%. Based on the present findings, the sphingobacterial heparinase differed from flavobacterial and other reported heparinases in molecular mass, composition, charge properties, active site, substrate specificities and other important characteristics, suggesting that it a novel heparin lysase distinct from those from other sources.  相似文献   

19.
Heparin inhibits the growth of several cell types in vitro, including bovine pulmonary artery smooth muscle cells (BPASMCs). To understand more about the heparin structure required for endogenous activity, chemically modified derivatives of native heparin and glycol-split heparin, namely, 2-O-desulfonated iduronic/glucuronic acid residues in heparin, and 2-O-desulfonated iduronic residues in glycol-split heparin were prepared. These were assayed for their antiproliferative potency on cultured BPASMCs. All of the 2-O-desulfonated heparin derivatives had significantly decreased less antiproliferative activity on BPASMCs. These results suggest that the 2-O-sulfo group of iduronic acid residues in heparin's major sequence is essential for the antiproliferative properties of heparin. The size of heparin does not affect the growth-inhibitory properties of heparin on BPASMCs at the three dose levels examined.  相似文献   

20.
Heparin and heparan sulfate fragments, obtained by bacterial heparinase and heparitinases, bearing an unsaturation at C4-C5 of the uronic acid moiety, are able to produce up to 80% reduction of the cytosolic calcium of smooth muscle cell lines. Unsaturated disaccharides from chondroitin sulfate, dermatan sulfate, and hyaluronic acid are inactive, indicating that, besides the unsaturation of the uronic acid, a vicinal 1 --> 4 glycosidic linkage is needed. An inverse correlation between the molecular weight and activity is observed. Thus, the ED(50) of the N-acetylated disaccharide derived from heparan sulfate (430 Da) is 88 microm compared with 250 microm of the trisulfated disaccharide (650 Da) derived from heparin. Except for enoxaparin (which contains an unsaturation at the non-reducing end and 1 --> 4 glycosidic linkage), other low molecular weight heparins and native heparin are practically inactive in reducing the cytosolic calcium levels. Thapsigargin (sarcoplasmic reticulum Ca(2+)-ATPase inhibitor), vanadate (cytoplasmic membrane Ca(2+)-ATPase inhibitor), and nifedipine and verapamil (Ca(2+) channel antagonists) do not interfere with the effect of the trisulfated disaccharide upon the decrease of the intracellular calcium. A significant decrease of the activity of the trisulfated disaccharide is observed by reducing extracellular sodium, suggesting that the fragments might act upon the Na(+)/Ca(2+) exchanger promoting the extrusion of Ca(2+). This was further substantiated by binding experiments and circular dichroism analysis with the exchanger inhibitor peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号