首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Annual litter fall, nutrient concentrations in litter components and annual weight of nutrients in litter fall have been estimated for karri forest stands aged 2, 6, 9 and 40 years and in mature forest. The weight of litter falling annually increases with stand age, ranging from 1.13 t/ha in 2-year-otd regeneration to 9.45 t/ha in mature forest. This increase is due mainly to greater amounts of twigs, bark and fruit falling in older stands. Leaf fait is relatively independent of stand age once the canopy of regenerating stands closes and the understorey has developed. Concentrations of N, P, K, S and Mn in karri leaf litter differ significantly between sites and the differences appear to be related to stand age. Highest levels of these elements are found in karri leaf litter from the youngest stand and the concentrations decrease with increasing stand age. The amounts of annual litter fall and of nutrients cycling in litter are among the largest reported for Australian forests. In particular cycling of Ca, K and Mg in mature karri forest is greater than has been reported for any other eucalypt forest. Karri forest understorey plays a key rote in nutrient cycling in these ecosystems, contributing 30–70% of the weight of many of the nutrients in the leaf component of titter. Understorey leaf material is particularly important in the cycling of N, S and the micro-nutrients Cu and Zn.  相似文献   

2.
为了解不同林龄和密度马尾松人工林针叶和根系的养分变化特征,该文在广西南宁市横县镇龙林场选择了四种林龄(幼龄林、中龄林、成熟林和过熟林)和四种密度(低密度林、中低密度林、中高密度林和高密度林)马尾松林共八种林分,分析了马尾松针叶和根系的C、N、P含量和比值及其与土壤养分的关系。结果表明:(1)所有龄林与密度林的马尾松针叶N∶P比值均大于16,表明该地区马尾松明显受P限制,幼龄林更加明显。(2)马尾松针叶C含量随着林龄增长逐渐增大后下降,N与P含量呈微弱下降趋势,导致C∶N比值、C∶P比值和N∶P比值呈微弱上升趋势,但没达到显著水平;根系C含量、P含量和C∶N比值逐渐增大,N含量、C∶P比值和N∶P比值呈U字型且都在幼龄林最大;针叶和根系在成熟林阶段均具有较高的P含量和最高的C含量。(3)中密度林的马尾松针叶的C和N含量较高且P含量最高,C∶N比值较低且C∶P比值和N∶P比值最低;根系的C、N和P含量较高,而C∶N比值、C∶P比值和N∶P比值较低。(4)马尾松的根系养分尤其是P含量在不同龄林和不同密度林之间的变化比针叶更加剧烈,且其与土壤养分之间的相关性比针叶更强。综上结果表明,马尾松人工林受P限制,在低龄林加强P肥管理和选择合适的林分密度(中等密度)则有利于缓解马尾松受P限制的状态。  相似文献   

3.
O'Connell, A. M. and Grove, T. S. 1985. Acid phosphatase activityin karri (Eucalyptus diversicolor F. Muell.) in relation tosoil phosphate and nitrogen supply.—J. exp. Bot. 36: 1359–1372 Soluble acid phosphatase activity was measured in tissues ofkarri (Eucalyptus diversicolor F. Muell.) seedlings and fiveyear old karri trees to which P and N fertilizer had been applied.Addition of P from 0 to 1250 mg P kg–1 soil with a basaltreatment of other nutrients produced significant increasesin growth, P content and P concentration of karri seedlings.In each of five plant components (shoot tips, partly expandedleaves, mature leaves, young stems and old stems) soluble acidphosphatase activity was greatest at low levels of added P anddecreased with increasing soil P supply. The range of acid phosphataseactivity (0·5-6·5 µmol NPP g–1 f.wt.min–1) was similar to that reported for a number of agriculturaland horticultural plants. Enzyme activity was highest for shoottips and lowest for old stems. However, the relative changein activity with decreasing soil P supply was greatest for stems(4·3 fold) and least for shoot tips (2·7 fold) Mature leaves of seedlings grown in ‘high P’ and‘low P’ soil at four levels of added N showed, inaddition to the effect of P, a significant N-P interaction onsoluble acid phosphatase activity. In leaf samples from fiveyear old karri trees there was a significant decrease in solubleacid phosphatase with increasing P fertilization. Addition ofN fertilizer had no significant effect on enzyme activity, probablybecause added N had little effect on foliar N concentrations Exponential models relating (1) plant growth to enzyme activityand (2) plant growth to P concentration in stems and matureleaves of plants grown in soil with a range of added P accountedfor 78–92% and 63–87%, respectively, of the variationin top dry weight. The results suggest that for the diagnosisof plant P status, (1) stem components may be the most appropriatetissue to sample, and (2) nutrient and enzyme assays may complementeach other, P concentration being most useful where P supplyis adequate and phosphatase activity where P supply limits growth Key words: Phosphatase activity, Eucalyptus diversicolor, nutrients, phosphorus, nitrogen, forests  相似文献   

4.
Ecological stoichiometry has been widely studied in terrestrial ecosystems, but these studies have been limited in terms of symbiotic association between alfalfa and arbuscular mycorrhizal fungi (AMF), especially during regrowth. To evaluate the effect of AMF on the regrowth and C:N:P stoichiometry of alfalfa (Medicago sativa L.) under well-watered and drought conditions, alfalfa plants inoculated with AMF (Rhizophagus irregularis, M), nitrogen-fixing bacteria (Sinorhizobium, R), both nitrogen-fixing bacteria and AMF or no inoculations (CK) were evaluated in a pot experiment under controlled conditions. The biomass and organic carbon (C), nitrogen (N) and phosphorus (P) nutritional status of plant leaves and roots were measured under two water treatments during regrowth. Water deficit reduced the accumulation of dry matter and the concentrations of C and N in leaves and P in roots but increased the concentrations of P in leaves and C and N in roots of alfalfa during regrowth. Compared to CK plants, inoculation significantly improved the regrowth biomass and the concentrations of C, N and P in the leaves and roots and especially increased P levels when the plant were inoculated with AMF. However, this effect of microbes on alfalfa regrowth was dependent on the soil water status. Drought reduced the C:N and C:P in the leaves and the C:N in roots, while N:P and C:P increased in the roots. Inoculation of AMF decreased the C:P and N:P in the leaves and the C:N and C:P in the roots, whereas it increased the C:N under water stress. These results indicate that AMF play a significant role in regrowth and C:N:P ecological stoichiometry after defoliation by influencing C assimilation, N and P uptake and that the responses in the leaves and the roots are opposite.  相似文献   

5.
The effect of an elevated partial pressure of CO2 (pCO2) on carbohydrate concentrations in source leaves and pseudo-stems (stubble) of Lolium perenne L. (perennial ryegrass) during regrowth was studied in a regularly defoliated grass sward in the field. The free air carbon dioxide enrichment (FACE) technology enabled natural environmental conditions to be provided. Two levels of nitrogen (N) supply were used to modulate potential plant growth. Carbohydrate concentrations in source leaves were increased at elevated pCO2, particularly at low N supply. Elevated leaf carbohydrate concentrations were related to an increased structural carbon (C) to N ratio and thus reflected an increased C availability together with a N-dependent sink limitation. Immediately after defoliation, apparent assimilate export rates (differences in the carbohydrate concentrations of young source leaves measured in the evening and on the following morning) showed a greater increase at elevated pCO2 than at ambient pCO2; however, replenishment of carbohydrate reserves was not accelerated. Distinct, treatment-dependent carbohydrate concentrations in pseudo-stems suggested an increasing degree of C-sink limitation from the treatment at ambient pCO2 with high N supply to that at elevated pCO2 with low N supply. During two growing seasons, no evidence of a substantial change in the response of the carbohydrate source in L. perenne to elevated pCO2 was found. Our results support the view that the response of L. perenne to elevated pCO2 is restricted by a C-sink limitation, which is particularly severe at low N supply.  相似文献   

6.
黄菊莹  余海龙  刘吉利  马飞  韩磊 《生态学报》2018,38(15):5362-5373
以宁夏荒漠草原为研究对象,于2014—2015年设置了降雨量变化(减雨50%、减雨30%、自然降雨、增雨30%和增雨50%)的野外模拟试验,测定了植物、微生物和土壤C、N、P含量,同时调查了植物群落组成和土壤含水量等指标,研究了各组分C、N、P化学计量特征对连续两年降雨量变化的响应,分析了土壤C∶N∶P和含水量分别与植物生长、养分利用以及微生物量积累的相关性。结果表明,控雨改变了植物叶片C∶N∶P,且其影响程度随物种不同而异:减雨50%提高了牛枝子(Lespedeza potanimill)绿叶N和P以及猪毛蒿(Artemisia scoparia)绿叶P摄取能力,增雨(30%和50%)降低了猪毛蒿绿叶N摄取能力。增雨提高了猪毛蒿绿叶C∶N,增雨30%提高了苦豆子(Sophora alopecuroides)绿叶C∶N。增雨降低了猪毛蒿绿叶N∶P,增雨30%降低了白草(Pennisetum centrasiaticum)绿叶N∶P。相比之下,控雨条件下枯叶C∶N∶P的变化幅度较小;随降雨量增加微生物量C、N以及C∶N逐渐增加,但增雨50%使微生物量C和C∶N降低;控雨对土壤C∶N∶P的影响较小,但增雨提高了土壤水分有效性,因此促进了植物和微生物生长;试验期内,相对稳定的土壤C∶N∶P不能很好地指示植物和微生物生长发育的养分受限状况;干旱时提高叶片养分摄取、湿润时增强叶片养分回收,可能解释了牛枝子对降雨量变化的弹性适应能力。  相似文献   

7.
Salix gracilistyla is one of the dominant plants in the riparian vegetation of the upper-middle reaches of rivers in western Japan. This species colonizes mainly sandy habitats, where soil nutrient levels are low, but shows high potential for production. We hypothesized that S.␣gracilistyla uses nutrients conservatively within stands, showing a high resorption efficiency during leaf senescence. To test this hypothesis, we examined seasonal changes in nitrogen (N) and phosphorus (P) concentrations in aboveground organs of S. gracilistyla stands on a fluvial bar in the Ohtagawa River, western Japan. The concentrations in leaves decreased from April to May as leaves expanded. Thereafter, the concentrations showed little fluctuation until September. They declined considerably in autumn, possibly owing to nutrient resorption. We converted the nutrient concentrations in each organ to nutrient amounts per stand area on the basis of the biomass of each organ. The resorption efficiency of N and P in leaves during senescence were estimated to be 44 and 46%, respectively. Annual net increments of N and P in aboveground organs, calculated by adding the amounts in inflorescences and leaf litter to the annual increments in perennial organs, were estimated to be 9.9 g and 0.83 g m−2 year−1, respectively. The amounts released in leaf litter were 6.7 g N and 0.44 g P m−2. These values are comparable to or larger than those of other deciduous trees. We conclude that S. gracilistyla stands acquire large amounts of nutrients and release a large proportion in leaf litter.  相似文献   

8.
黄土高原子午岭地区人工油松林碳氮磷生态化学计量特征   总被引:13,自引:8,他引:5  
汪宗飞  郑粉莉 《生态学报》2018,38(19):6870-6880
分析人工植被重建背景下,森林植物、枯落物与土壤的碳(C)、氮(N)、磷(P)化学计量特征有助于深入理解森林生态系统养分循环规律和系统稳定机制。以黄土高原子午岭地区的3个林龄(10、25 a和40 a)的人工油松林为对象,通过测定油松林叶片、枯落物和土壤的碳(C)、氮(N)、磷(P)含量,研究人工油松林不同林龄叶片、枯落物和土壤的化学计量学特征。结果表明,不同林龄油松叶片C、N、P含量分别为538.85—560.54 g/kg、9.00—10.47 g/kg和1.04—1.13 g/kg。在3个林龄油松林中,除叶片C含量外,叶片N、P含量存在显著差异(P0.05);枯落物层以及土壤层的C、N、P含量均存在显著差异(P0.05),且枯落物层含量大于土壤层。随着林龄的增加,叶片C∶N比呈现先减小后增大的变化,N∶P和C∶P比呈显著增加趋势,而枯落物层C∶N、C∶P和N∶P比无显著差异。同时,随着林龄的增加,除10—20 cm土层的C∶N比外,土壤的C∶N比在0—10 cm土层和C∶P和N∶P比在0—10和10—20 cm皆呈显著增加趋势。研究区油松林叶片N∶P比平均值为9.13,低于14,表明油松林生长主要受氮的限制。土壤的N含量与叶片和枯落物层的N含量、以及三者间N∶P比呈显著线性相关(P0.05),充分体现了油松林植物、枯落物与土壤之间的互动关系。研究结果可为我国黄土高原脆弱生态区的生态功能恢复与植被重建提供科学依据。  相似文献   

9.
Many of the natural forested ecosystems that still remain in mainland China are being cleared with potentially detrimental effects on woody plant species diversity on both local and regional scales. The most extensive stand of subtropical broad-leaved forest remaining in China is located in Yunnan Province. In an effort to document the influence of human-induced disturbance on Yunnan's woody flora, floristic inventories were conducted in a stand of primary forest and in regrowth stands located in its interior and along its outer margin in the Xujiaba Nature Sanctuary in the Ailao Mountain Range. Of particular interest was the location of the disturbance relative to the primary forest source area. A total of 134 woody plant species representing 74 genera and 43 families were recorded. The floristics of the two regrowth stands were significantly different from each other, with < 10% of their respective floras comprised of co-occurring species. The interior regrowth stand had a higher number of co-occurring species with the primary forest; however, > 40% were still non-co-occurring.The principal families represented in the primary forest and the interior regrowth stand were Aquifoliaceae, Berberidaceae, Fagaceae, Lauraceae, Rosaceae, Smilacaceae, Symplocaceae, Theaceae, and Vacciniaceae. The three dominant species with relative importance values ranging from > 5% to 18% in both the primary forest and the interior regrowth stand were Castanopsis wattii, Lithocarpus jingdongensis, and Symplocos sumuntia. The edge regrowth stands had the lowest species diversity and were dominated by the native pine Pinus yunnanensis, with a relative importance of 24%. The principal families represented in the edge regrowth stand were Betulaceae, Ericaceae, Fagaceae, Myricaceae, Pinaceae, and Theaceae. Only the Fagaceae and Theaceae were well-represented in all three stands. The results of the study document the low species diversity in post-cutting regrowth on the margins of the primary forest as compared with post-cutting regrowth in the forest interior.  相似文献   

10.
Book Reviews     
Dissolved organic carbon (DOC) and nitrogen (DON) derived from aquatic and terrestrial vascular plants provide a major energy and nutrient source for freshwater and coastal marine biota. The bioavailability of this material may to a large extent depend on plant species. In this study, we have compared the bioavailability of DOC and DON sampled in two distinct stands of Typha domingensisand Eleocharis mutatain a coastal tropical lake and in the adjacent ocean in the state of Rio de Janeiro, Brazil. Bioavailability of organic matter was assessed by regrowth bioassays using natural bacterial inocula. Nutrients were added to achieve carbon or nitrogen limitation. At all sampling sites, DON comprised over 95% of the total bioavailable nitrogen, suggesting its dominant role as a nitrogen source. The bioavailability of lacustrine DON (22% in the Typhastand and 34% in the Eleocharisstand) exceeded the bioavailability of DOC (8 and 10%, respectively) and exhibited a larger difference between the stands. 3H-leucine incorporation studies showed that lake bacterioplankton had a well balanced supply of C, N and P. Therefore, an accumulation of labile DON due to an excess nitrogen supply is not probable. We propose that a substantial part of the lake DON was newly formed within the macrophyte stands, while DOC was predominantly of terrestrial origin and more diagenetically changed.  相似文献   

11.
Herbivory in natural communities can be high, reducing the growth and reproduction of individual plants. To diminish the impact of herbivores, plants use a variety of defensive mechanisms. It is now recognized that the plant world is characterized by a proliferation of secondary metabolites, but models of the evolution of defence strategies assume that plants are constrained by finite resources, and that defences are costly. In the present study, the relationships between defence, growth and nutrient concentration in Bauhinia brevipes Vog. (Leguminosae) in south‐eastern Brazil were investigated. Patterns of herbivory and defence were examined for 170 B. brevipes individuals in 1997 and 1998. Leaf age influenced tannin concentration and herbivore attack on B. brevipes. Mature leaves had higher concentrations of tannins than young leaves, and young leaves were approximately 60% more likely to be attacked than mature leaves. Carbon and nitrogen content explained 36% of the variation in the percentage of attacked leaves in B. brevipes (y = 16.29 – 0.31 C + 0.25 N; r2 = 0.36; F = 9.56; P < 0.0001). Tannins acted as defensive compounds on B. brevipes leaves against free‐feeding herbivores, but no clear pattern was observed against galling herbivores. The amounts of nitrogen, carbon, potassium, and aluminium explained approximately 69% of the variation in tannin concentration on B. brevipes leaves (y = 0.62 – 0.16 N – 0.36 K – 0.26 Al + 0.74 C; r2 = 0.69; F = 21.18; P < 0.0001). We found an inverse relationship between shoot growth rates and tannin concentration in B. brevipes, indicating that the production of tannins may be costly, therefore offering some evidence for the trade‐off hypothesis. Nevertheless, the weak relationship observed between herbivore damage and tannin concentration indicates that other factors are also involved with herbivore pressure.  相似文献   

12.
Variation in plant N resorption may change with stand development because plants tend to adjust their ecophysiological traits with aging. In addition, changes in soil nitrogen (N) pools associated with stand development may also affect plant N resorption. Here, we examined green- and senesced-leaf N concentrations and resorption of trembling aspen ( Populus tremuloides Michx.) in boreal forest stands of different ages (7, 25, 85 and 139 years, respectively). All sampled stands originated from wildfires and established on similar parent materials (glacial tills) and had similar climates. N concentrations in both green and senesced leaves increased between 27% and 54% along the stand age chronosequence. Resorption efficiency (percentage difference of N between green and senesced leaves) and proficiency (N concentration in senesced leaves) were higher for leaves in younger stands than in older stands. An analysis of covariance indicated that the patterns of leaf N concentration and resorption were affected significantly by stand age, but not by available soil N concentration. Our results indicate that at an intra-specific level, plants could adjust their N resorption efficiency and proficiency with stand development.  相似文献   

13.
Aragones LV  Lawler IR  Foley WJ  Marsh H 《Oecologia》2006,149(4):635-647
Grazing by dugongs and cropping by green turtles have the capacity to alter the subsequent nutritional quality of seagrass regrowth. We examined the effects of simulated light and intensive grazing by dugongs and cropping by turtles on eight nutritionally relevant measures of seagrass chemical composition over two regrowth periods (short-term, 1–4 months; long-term, 11–13 months) at two seagrass communities (a mixed species community with Zostera capricorni, Halophila ovalis, Halodule uninervis, Cymodocea rotundata and C. serrulate; and a monospecific bed of Halodule uninervis) in tropical Queensland, Australia. The concentrations of organic matter, total nitrogen, total water-soluble carbohydrates, total starch, neutral detergent fiber, acid detergent fiber, acid lignin, as well as the in vitro dry matter digestibility (IVDMD) were measured in the leaves and below-ground parts of each species using near-infrared reflectance spectroscopy (NIRS). Regrowth of preferred species such as H. ovalis and H. uninervis from simulated intensive dugong grazing after a year exhibited increased (by 35 and 25%, respectively, relative to controls) whole-plant N concentrations. Similarly, regrowth of H. ovalis from simulated turtle cropping showed an increase in the leaf N concentration of 30% after a year. However, these gains are tempered by reductions in starch concentrations and increases in fiber. In the short-term, the N concentrations increased while the fiber concentrations decreased. These data provide experimental support for a grazing optimization view of herbivory in the tropical seagrass system, but with feedback in a different manner. Furthermore, we suggest that in areas where grazing is the only major source of natural disturbance, it is likely that there are potential ecosystem level effects if and when numbers of dugongs and turtles are reduced.  相似文献   

14.

Background and aims

Nutrient resorption from the senesced to the green leaves can help a plant re-use elements, thus improving adaptability and persistence. How the resorption of nitrogen (N), phosphorus (P) and potassium (K) varies among differently aged lucerne (Medicago sativa) stands and how they correlate to their stoichiometry in the leaves and soil remain uncertain. This study aimed to analyze the resorption efficiencies (REs) of N, P and K and their possible correlations with stoichiometric ratios in the plant and soil.

Methods

The concentrations of plant N, P and K and soil N, P, K and carbon (C) were measured under lucerne stands established in different years, and stoichiometric ratios and REs were calculated. The relationships of REs with stoichiometric ratios were analyzed.

Results

The nitrogen resorption efficiency (NRE) was quite variable among the different stands and tended to rise and then drop with stand age, ranging from 4.6 to 33.7 % with an average of 16.2 %. The phosphorus resorption efficiency (PRE) tended to increase with stand age, ranging from 11.1 to 38.3 % with an average of 27.3 %. The potassium resorption efficiency (KRE) increased with stand age, ranging from 21.0 to 49.8 % with an average of 36.9 %. The KRE was generally highest, followed by the PRE, and the NRE was lowest. Leaf N:P and N:K generally decreased and then increased with stand age, while the K:P increased and then decreased. In the green leaves, total N concentration increased significantly with NRE and PRE, and total P concentration rose significantly with PRE, while in the senesced leaves, total N concentration decreased significantly with NRE and KRE. The N:P in the green leaves decreased significantly with PRE and the K:P in the senesced leaves dropped with NRE. Furthermore, the REs decreased with total soil nutrition status if there was any correlation. The REs increased significantly with soil ammonium N concentration, while the NRE decreased significantly with soil nitrate N concentration. In addition, soil available P concentration at most depths led to significant increases in NRE and KRE. However, the REs were rarely influenced by stoichiometric ratios of soil N, P, K and C.

Conclusions

The NRE rose and then dropped, and the PRE and KRE both increased with stand age. Leaf N:P and N:K generally decreased and then increased with stand age, while K:P increased and then decreased. The concentrations of N, P and K increased in the green leaves and decreased in the senesced leaves with REs if there was any correlation. The REs decreased with total soil nutrition status if there was any correlation. However, the REs hardly changed with stoichiometric ratios in the leaves and soil under differently aged lucerne stands. There appear to be no correlations between REs and element stoichiometries.  相似文献   

15.
以青藏高原亚高寒草甸为研究对象,采用随机区组设计,通过连续4a添加N、P,研究了不同施肥(N、P、N+P)处理下群落物种丰富度、种多度分布模式以及群落相似性的变化特征。结果显示:(1)N、N+P连续添加4年后,随N素添加水平的增加,草地植物群落物种丰富度逐渐降低(P0.001);种多度分布曲线的斜率逐渐增大;N+P添加处理对植物群落物种丰富度和种多度分布(SAD)曲线的影响较单独N添加处理更显著,如N15P15处理下群落物种丰富度的降幅最大,达对照群落的65.5%;(2)单一N或N+P处理中,不同添加量间的植被组成趋异,而相同添加量的植被组成趋同(stress level=0.152);(3)N、N+P添加引起刷状根的丛生型禾本科植物逐渐在植物群落中占据优势;(4)P素添加对群落物种丰富度、种多度分布曲线、群落相似性和不同生长型组成及比例的影响不显著;(5)植物生长型特征和N/P添加处理可解释56.97%植物群落的物种多度分布特征。这些结果表明:亚高寒草甸地区N添加引起植物群落组成的重新排序、优势种的变化、SAD曲线逐渐陡峭,群落的相似性增加;N富集时,添加P素会增加N素的利用效率,且群落结构受N、P供应水平的影响。  相似文献   

16.
姜沛沛  曹扬  陈云明  王芳 《生态学报》2016,36(19):6188-6197
在陕西省北部延安市境内子午岭林区,采用时空互代的方法选取9、23、33、47年生油松(Pinus tabuliformis)人工林为研究对象,比较油松不同器官(叶、枝、干、根)、凋落物及土壤C、N、P含量及其比值的差异,探讨它们随林龄的变化及其相互间的关系,以期为油松人工林的生产、改善和林木生长环境的调节提供参考。结果表明:除根中C含量在林龄间差异不显著外,其它器官C、N、P含量及其比值在林龄间均差异显著且随林龄增加变化趋势不尽相同。9、23、33、47年生油松林C、N、P含量及N∶P比值均在叶中最高;C∶N比值均在干中最高,根中次之;C∶P比值均在干中最高,其它器官大小次序不一。除33年生油松林叶中N∶P比值大于14外,其它各器官各林龄N∶P比值均小于14,且N∶P比值随林龄先增加后减少,故可判断油松在该区域受N限制较为严重,且随林龄的增加受N限制的情况有所缓解。不同林龄土壤和凋落物C、N、P含量及其比值差异显著,且后者均大于前者。土壤与凋落物C、P含量及C∶N、C∶P、N∶P比值随林龄增加变化趋势完全一致,表明土壤与凋落物之间有着密切的关系。叶片与凋落物N、P含量及C∶N、C∶P、N∶P比值之间显著相关,表明凋落物的养分承自植物叶片,二者之间关系紧密;植物和土壤的C、N、P含量之间均不存在显著相关性,说明土壤C、N、P供应量对乔木叶片C、N、P含量影响不大。  相似文献   

17.
以中国科学院巴音布鲁克草原生态系统研究站长期围栏内外的羊茅(Festuca ovina)、天山赖草(Leymus tiansecalinus)、二裂委陵菜(Potentilla bifurca)和鹅绒委陵菜(Potentilla anserine)4种植物叶片和土壤为研究对象,分析了放牧与围封对植物叶片和土壤C、N、P的化学计量特征的影响。结果表明,围封样地土壤养分浓度整体高于放牧样地(P0.05),全氮(TN)浓度除外。围封显著增加羊茅叶片C、N浓度(P0.05),对P浓度影响不显著;围封显著增加鹅绒委陵菜叶片的C浓度,但是显著降低叶片的N和P浓度(P0.05),围封对天山赖草和二裂委陵菜养分含量影响不显著。围封显著增加鹅绒委陵菜C∶N和C∶P(P0.05);围封显著降低羊茅C∶N、C∶P和增加N∶P(P0.05);围封显著降低二裂委陵菜C∶N(P0.05),对天山赖草的化学计量特征影响不显著。不同植物对围封的响应不同,意味着长期围封可能会改变天山高寒草原生态系统的结构。围封降低优势种(羊茅)的固碳能力,增加退化期出现的代表性植物(鹅绒委陵菜)的固碳能力,表明在长期围封下植物凋落物中的杂类草(鹅绒委陵菜)可能更多的为土壤提供碳来源,也能促进优势禾本科物种的氮含量和碳含量的增加。  相似文献   

18.
Young plants of a rhizomatous grass Calamagrostis epigejos (L.) Roth were grown from seed in nutrient solutions containing nitrogen in concentrations 0.1, 1.0, and 10 mM. After six weeks of cultivation the plants were defoliated and changes in growth parameters and in content of storage compounds were measured in the course of regrowth under highly reduced nitrogen availability. Plants grown at higher nitrogen supply before defoliation had higher amount of all types of nitrogen storage compounds (nitrates, free amino acids, soluble proteins), which was beneficial for their regrowth rate, in spite of lower content of storage saccharides. Amino acids and soluble proteins from roots and stubble bases were the most important sources of storage compounds for regrowth of the shoot. Faster growth of plants with higher N content was mediated by greater leaf area expansion and greater number of leaves. In plants with lower contents of N compounds number of green leaves decreased after defoliation significantly and senescing leaves presumably served as N source for other growing organs. Results suggest that internal N reserves can support regrowth of plants after defoliation even under fluctuating external N availability. Faster regrowth of C. epigejos with more reserves was mediated mainly by changes in plant morphogenesis.  相似文献   

19.
Restoration of salt marsh ecosystems is an important concern in the eastern United States to mitigate damage caused by industrial development. Little attention has been directed to the mycorrhizal influence on plantings of salt marsh species to stabilize estuarine sediments and establish cover. In our study, seedlings of two salt marsh grasses, Spartina alterniflora and Spartina cynosuroides, were grown in soil with a commercial, mixed species inoculum of arbuscular mycorrhizal fungi. Plants were grown in experimental “ebb and flow” boxes, simulating three levels of tidal inundation, to which two levels of applied phosphorus (P) and two levels of salinity were imposed. After 2.5 months, S. alterniflora was poorly colonized by arbuscular mycorrhizae, developing only fungal hyphae and no arbuscules, but S. cynosuroides became moderately colonized. Mycorrhizal inoculation marginally improved growth and P and nitrogen (N) content of both plant species at low levels of P supply but significantly increased tillering in both plant species. This factor could be beneficial in enhancing ground cover during restoration procedures. Greater P availability increased the mycorrhizal status of S. cynosuroides and improved P nutrition of both plant species, despite a reduction in the root‐to‐shoot ratio. Increasing salinity reduced mycorrhizal colonization of S. alterniflora but not of S. cynosuroides. Growth and nutrient content of S. alterniflora was improved at higher levels of salinity, but only increased nutrient content in S. cynosuroides. Increased duration of tidal inundation decreased plant growth in both species, but tissue P and N concentrations were highest with the longest time of inundation in both species.  相似文献   

20.
为了探讨荒漠草原植物养分回收特征对长期增温和氮素添加的响应以及自然降水变异对其的调控作用,该研究依托实施12年的模拟增温和氮素添加实验平台,在相对多雨的2016年(超过长期均值52%)和相对少雨的2017年(低于长期均值16%),以常见C_3植物银灰旋花(Convolvulus ammannii)和C_4植物木地肤(Kochia prostrata)为研究对象,测定分析绿叶和枯叶的氮磷含量及回收效率。结果表明:(1)在相对多雨年(2016年),增温使2种植物的绿叶氮、枯叶氮、绿叶磷、枯叶磷含量分别增加了14.32%、25.45%、17.97%和46.47%,氮、磷回收效率分别显著减小了9.41%和16.99%(P0.05);氮素添加使2种植物的绿叶氮、枯叶氮、绿叶磷、枯叶磷含量分别提高了17.32%、25.62%、20.21%和51.41%,而氮、磷回收效率显著降低了9.33%和18.89%(P0.05);增温+氮素添加共同处理显著增加了植物氮磷含量、降低了氮磷回收效率。(2)在相对少雨年(2017年),增温、氮素添加、增温+氮素添加处理对植物叶片氮磷含量、回收效率均无显著影响。(3)叶片氮磷含量在物种间差异极显著(P0.000 1),而氮磷回收效率在物种间无显著差异。(4)回归分析表明,植物叶片氮磷含量随着土壤无机氮、有效磷及含水量的增加而增加,植物氮磷回收效率则随着土壤养分和水分的可利用性的增加而降低。研究认为,荒漠草原植物养分回收对全球变化的响应受自然降水变异的调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号