首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The expression and activity of glutamine synthetase (GS, EC 6.3.1.2) were examined in relation to the rate of CO2 assimilation in sunflower (Helianthus annuus L.) leaves. Intact plants were kept in the dark for 72 h and subsequently exposed to light under different atmospheric CO2 concentrations (100, 400 and 1200 microl l-1) for 6 h. The in vivo rates of net CO2 assimilation correlated with atmospheric CO2 concentrations. Stomatal conductances and transpiration rates remained largely unaffected by CO2 levels. Exposure of the plants to increasing CO2 concentrations in the light caused concomitant increases in the contents of starch and soluble sugars and a decrease in the nitrate content in leaves. Both cytosolic and chloroplastic (GS2) GS activities were higher at elevated CO2. A greater accumulation of GS2 mRNA was also observed under high CO2. Exogenous supply of sucrose to detached leaves greatly increased the levels of GS enzyme activity and of mRNA for chloroplastic GS in the dark. These results indicate that GS expression and activity in sunflower leaves are modulated by the rate of CO2 assimilation, and that photosynthesized sugars are presumably involved as regulatory metabolites.  相似文献   

3.
The interactions between sulphur nutrition and Cd exposure were investigated in maize (Zea mays L.) plants. Plants were grown for 12 days in nutrient solution with or without sulphate. Half of the plants of each treatment were then supplied with 100 microM Cd. Leaves were collected 0, 1, 2, 3, 4 and 5 days from the beginning of Cd application and used for chemical analysis and enzyme assays. Cd exposure produced symptoms of toxicity (leaf chlorosis, growth reduction) and induced a noticeable accumulation of non-protein SH compounds. As phytochelatins are glutamate- and cysteine-rich peptides, the effect of cadmium on some enzyme activities involved in N and S metabolism of maize leaves was studied in relation to the plant sulphur supply. In vivo Cd application to S-sufficient plants resulted in a drop of all measured enzyme activities. On the other hand, S-deficient plants showed a decrease in nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) activity, and an increase in NAD-dependent glutamate dehydrogenase (GDH; EC 1.4.1.2) and phosphoenolpyruvate carboxylase (PEPc; EC 4.1.1.31) activity as a result of the Cd treatment. Furthermore, in the same plants ATP sulphurylase (ATPs; EC 2.7.7.4) and O-acetylserine sulphydrylase (OASs; EC 4.2.99.8) showed a particular pattern as both enzymes exhibited a transient maximum value of activity after 4 days from the beginning of Cd exposure. Results provide evidence that the increase of ATPs, OASs, GDH and PEPc activities, observed exclusively in S-deficient Cd-treated plants, may be part of the defence mechanism based on the production of phytochelatins.  相似文献   

4.
5.
6.
The effect of cadmium (Cd) was investigated on the in vitro activities of leaf and root enzymes involved in carbon (C) and nitrogen (N) metabolism of bean (Phaseolus vulgaris L. cv. Morgane). Cd induced a high increase in maximal extractable activity of glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2). Cd promoted ammonium accumulation in leaves and roots, and a tight correlation was observed between ammonium amount and GDH activity. Changes in GDH activity appear to be mediated by the increase in ammonium levels by Cd treatment. Cd stress also enhanced the activities of phosphoenolypyruvate carboxylase (PEPC, EC 4.1.1.31) and NADP(+)-isocitrate dehydrogenase (NADP(+)-ICDH, EC 1.1.1.42) in leaves while they were inhibited in roots. Immuno-titration, the PEPC sensitivity to malate and PEPC response to pH indicated that the increase in PEPC activity by Cd was due to de novo synthesis of the enzyme polypeptide and also modification of the phosphorylation state of the enzyme. Cd may have modified, via a modulation of PEPC activity, the C flow towards the amino acid biosynthesis. In leaves, Cd treatments markedly modified specific amino acid contents. Glutamate and proline significantly accumulated compared to those of the control plants. This study suggests that Cd stress is a part of the syndrome of metal toxicity, and that a readjustment of the co-ordination between N and C metabolism via the modulation of GDH, PEPC and ICDH activities avoided the accumulation of toxic levels of ammonium.  相似文献   

7.
Drought- and ABA-induced changes in photosynthesis of barley plants   总被引:1,自引:0,他引:1  
The changes caused by drought stress and abscisic acid (ABA) on photosynthesis of barley plants (Hordeum vulgare. L. cv. Alfa) have been studied. Drought stress was induced by allowing the leaves to lose 12% of their fresh weight. Cycloheximide (CHI), an inhibitor of stress-induced ABA accumulation, was used to distinguish alterations in photosynthetic reactions that are induced after drought stress in response to elevated ABA levels from those that are caused directly by altered water relations. Four hoars after imposition of drought stress or 2 h after application of ABA, Ihe bulk of the leaf's ABA content measured by enzyme-amplified ELISA, increased 14- and 16-fold, respectively. CHI fully blocked the stress-induced ABA accumulation. Gas exchange measurements and analysis of enzyme activities were used to study the reactions of photosynthesis to drought stress and ABA. Leaf dehydration or ABA treatment led to a noticeable decrease in both the initial slope of the curves representing net photosynthetic rate versus intercellular CO2 concentration and the maximal rate of photosynthesis; dehydration of CHI-treated plants showed much slower inhibition of the latter. The calculated values of the intercellular CO2 concentration, CO2 compensation point and maximal carboxylating efficiency of ribulose 1,5-bisphosphate (RuBP) carboxylase support the suggestion that biochemical factors are involved in the response of photosynthesis to ABA and drought stress. RuBP carboxylase activity was almost unaffected in ABA- and CHI-treated, non-stressed plants. A drop in enzyme activity was observed after leaf dehydration of the control and ABA-treated plants. When barley plants were supplied with ABA, the activity of carbonic anhydrase (CA, EC 4.2.2.1) increased more than 2-fold. Subsequent dehydration caused an over 1.5-fold increase in CA activity of the control plants and a more than 2.5-fold increase in ABA-treated plants. Dehydration of CHI-treated plants caused no change in enzyme activity. It is suggested that increased activity of CA is a photosynthetic response to elevated ABA concentration.  相似文献   

8.
9.
热带季节雨林冠层树种绒毛番龙眼的光合生理生态特性   总被引:15,自引:0,他引:15  
采用Li-6400便携式光合作用测定仪,对西双版纳热带季节雨林冠层树种绒毛番龙眼成树树冠上、中、下3层叶片进行了测定,分析西双版纳热带季节雨林冠层树木的光合作用.结果表明,绒毛番龙眼成树具有喜光的光合特性,光饱和点较高(1 000~1 500 μmol·m-2·s-1),而光补偿点较低(7.7~15.3 μmol·m-2·s-1),对光环境有较强的适应和调节能力,光合有效辐射是影响绒毛番龙眼光合日进程的关键因子;12月,叶片处于成熟期,生长良好,光合能力较强,树冠上层净光合速率(Pn)日变化为单峰型,最大净光合速率(Amax)约为8.9 μmol CO2·m-2·s-1;4月处于新老树叶更替期,光合能力下降,树冠上层Pn日变化为双峰型,中午出现“午休”现象,树冠上层Amax约为4.3 μmol CO2·m-2·s-1;7月上、中层叶片Pn为单峰型,下层出现“午休”.如人为使CO2浓度在短期内迅速升高,则绒毛番龙眼的Pn会增加,而气孔导度和蒸腾速率降低;CO2浓度从400 μmol·mol-1升高到800 μmol·mol-1时,干季水分利用效率(WUE)提高约50%~100%,雨季WUE较低.  相似文献   

10.
During growth of the primary leaves of Avena sativa L., the distribution of extractable L-phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and chalcone-flavanone isomerase (CFI, EC 5.5.1.6) activities in distinct leaf sections (top section, medium section and meristematic basal section) and in the epidermal and mesophyll tissues were investigated in relation to C-glycosylflavone accumulation. Characteristic changes have been observed in the levels of PAL and CFI activities within the three leaf sections, depending upon their stage of development. An increase in both enzyme activities accompanies a strong flavone accumulation in the section of the leaf that derives from the basal meristem. Highest specific PAL activity is localized in the meristem itself, which is poor in both flavones and CFI activity. Total flavone accumulation was found to be nearly the same in all three leaf tissues, lower and upper epidermis and mesophyll. Similarly, PAL activity is distributed about equally in these tissues in young leaves; in older ones, activity is relatively higher in the lower leaf epidermis. In contrast, CFI is found to be localized almost entirely in the mesophyll and not in the epiderms. Therefore the question arises whether CFI is involved at all in flavone metabolism and whether it may represent, as a marker enzyme, the localization of other specific C15-enzymes of the flavonoid biosynthetic pathway in oat primary leaves.Abbreviations PAL L-phenylalamine ammonia lyase - CFI chalcone-flavanone isomerase  相似文献   

11.
The effects of zinc on growth, mineral content, chlorophyll a fluorescence, and detoxifying enzyme activity (ascorbate peroxidase (APX), EC 1.11.1.11; superoxide dismutase (SOD), EC 1.15.1.1) of ryegrass infected or not by Acremonium lolii, and treated with nutrient solution containing 0-50 mM ZnSO(4) were studied. The introduction of zinc induces stress with a decrease in growth at 1, 5 and 10 mM ZnSO(4) and a cessation of growth at 50 mM ZnSO(4), in ryegrass plants infected by A. lolii or not. This decrease in growth may be due to an accumulation of zinc in leaves. Nevertheless, symbiotic plants showed higher values in tiller number, an advantage conferred by the fungus. After 24 d of Zn exposure, leaf fresh weights and leaf water content were lower in plants growing with Zn in the culture medium and no advantage was conferred by the fungus to its host. An increase in Zn supply resulted in a decrease of the Ca, K, Mg, and Cu content of the leaves, a reduction in the quantum yield of electron flow throughout photosystem II (DeltaF/F(1)(m))and a lowering of the efficiency of photosynthetic energy conversion (F(v)/F(m)), compared to control plants. To counter this zinc stress, detoxifying enzymes APX and SOD increased (100%) when Zn reached the value of 50 mM in the nutrient solution. At 10 mM ZnSO(4), the presence of the fungus in the plant led to an increase in the threshold toxicity of plants to zinc by a diminution of APX activity.  相似文献   

12.
Transgenic tobacco ( Nicotiana tabacum L. cv. Xanthi) plants expressing cucumber ascorbate oxidase (EC.1.10.3.3) were used to examine the role of extracellular ascorbic acid in mediating tolerance to the ubiquitous air pollutant, ozone (O(3)). Three homozygous transgenic lines, chosen on the basis of a preliminary screen of AO activity in the leaves of 29 lines, revealed up to a 380-fold increase in AO activity, with expression predominantly associated with leaf cell walls. Over-expression of AO resulted in no change in the total ascorbate content recovered in apoplast washing fluid, but the redox state of ascorbate was reduced from 30% in wild-type leaves to below the threshold for detection in transgenic plants. Levels of ascorbic acid and glutathione in the symplast were not affected by AO over-expression, but the redox state of ascorbate was reduced, while that of glutathione was increased. AO over-expressing plants exposed to 100 nmol mol(-1) ozone for 7 h day(-1) exhibited a substantial increase in foliar injury, and a greater pollutant-induced reduction in both the light-saturated rate of CO(2) assimilation and the maximum in vivo rate of ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation, compared with wild-type plants. Transgenic plants also exhibited a greater decline in CO(2) assimilation rate when exposed to a brief ozone episode (300 nmol mol(-1) for 8 h). Stomatal conductance, hence O(3) uptake, was unaffected by AO over-expression. Our findings illustrate the important role played by ascorbate redox state and sub-cellular compartmentation in mediating the tolerance of plants to ozone-induced oxidative stress.  相似文献   

13.
The present study investigated the possible mediatory role of salicylic acid (SA) in protecting photosynthesis from cadmium (Cd) toxicity. Seeds of maize (Zea mays L., hybrid Norma) were sterilized and divided into two groups. Half of the seeds were presoaked in 500muM SA solution for only 6h, after which both groups were allowed to germinate for 3d and were then grown for 14d in Hoagland solution at 22/18 degrees C in a 16/8-h light/dark period and 120mumolm(-2)s(-1) PAR. All seedlings (without H(2)O and SA controls) were transferred to Cd-containing solutions (10, 15, and 25muM) and grown for 14d. The rate of CO(2) fixation and the activity of ribulose 1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were measured. Changes in the levels of several important parameters associated with oxidative stress, namely H(2)O(2) and proline production, lipid peroxidation, electrolyte leakage, and the activities of antioxidative enzymes (superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), and guaiacol peroxidase (POD, EC 1.11.1.7)) were measured. Exposure of the plants to Cd caused a gradual decrease in the shoot and root dry weight accumulation, with the effect being most pronounced at 25muM Cd. Seed pretreatment with SA alleviated the negative effect of Cd on plant growth parameters. The same tendency was observed for the chlorophyll level. The rate of CO(2) fixation was lower in Cd-treated plants, and the inhibition was partially overcome in SA-pretreated plants. A drop in the activities of RuBPC and PEPC was observed for Cd-treated plants. Pretreatment with SA alleviated the inhibitory effect of Cd on enzyme activity. Proline production and the rates of lipid peroxidation and electrolyte leakage increased in Cd-treated plants, whereas the values of these parameters were much lower in SA-pretreated plants. Treatment of plants with Cd decreased APX activity, but more than doubled SOD activity. Pretreatment with SA caused an increase in both APX and SOD activity, but caused a strong reduction in CAT activity. The data suggest that SA may protect cells against oxidative damage and photosynthesis against Cd toxicity.  相似文献   

14.
Tewari RK  Kumar P  Sharma PN 《Planta》2006,223(6):1145-1153
The aim of the study was to implicate the generation of reactive oxygen species (ROS) and altered cellular redox environment with the effects of Cu-deficiency or Cu-excess in mulberry (Morus alba L.) cv. Kanva 2 plants. A study of antioxidative responses, indicators of oxidative damage and cellular redox environment in Cu-deficient or Cu-excess mulberry plants was undertaken. While the young leaves of plants supplied with nil Cu showed chlorosis and necrotic scorching of laminae, the older and middle leaves of plants supplied with nil or 0.1 μM Cu showed purplish-brown pigmented interveinal areas that later turned necrotic along the apices and margins of leaves. The Cu-excess plants showed accelerated senescence of the older leaves. The Cu-deficient plants showed accumulation of hydrogen peroxide and superoxide anion radical. The accumulation of hydrogen peroxide was strikingly intense in the middle portion of trichomes on Cu-deficient leaves. Though the concentration of total ascorbate increased with the increasing supply of Cu, the ratio of the redox couple (DHA/ascorbic acid) increased in Cu-deficient or Cu-excess plants. The activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) increased in both Cu-deficient and Cu-excess plants. The results suggest that deficiency of Cu aggravates oxidative stress through enhanced generation of ROS and disturbed redox couple. Excess of Cu damaged roots, accelerated the rate of senescence in the older leaves, induced antioxidant responses and disturbed the cellular redox environment in the young leaves of mulberry plants.  相似文献   

15.
J. Brulfert  D. Guerrier  O. Queiroz 《Planta》1982,154(4):332-338
Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPC phosphoenolpyruvate carboxylase (EC 4.1.1.31) - LD long day - SD short day  相似文献   

16.
Astolfi  S.  De Biasi  M.G.  Passera  C. 《Photosynthetica》2001,39(2):177-181
The effect of sulphur deprivation and irradiance (180 and 750 µmol m–2 s–1) on plant growth and enzyme activities of carbon, nitrogen, and sulphur metabolism were studied in maize (Zea mays L. Pioneer cv. Latina) plants over a 15-d-period of growth. Increase in irradiance resulted in an enhancement of several enzyme activities and generally accelerated the development of S deficiency. ATP sulphurylase (ATPs; EC 2.7.7.4) and o-acetylserine sulphydrylase (OASs; EC 4.2.99.8) showed a particular and different pattern as both enzymes exhibited maximum activity after 10 d from the beginning of deprivation period. Hence in maize leaves the enzymes of C, N, and S metabolism were differently regulated during the leaf development by irradiance and sulphur starvation.  相似文献   

17.
Expression and activity of nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) were analysed in relation to the rate of CO(2) assimilation in cucumber (Cucumis sativus L.) leaves. Intact plants were exposed to different atmospheric CO(2) concentrations (100, 400 and 1200microLL(-1)) for 14 days. A correlation between the in vivo rates of net CO(2) assimilation and the atmospheric CO(2) concentrations was observed. Transpiration rate and stomatal conductance remained unaffected by CO(2) levels. The exposure of the cucumber plants to rising CO(2) concentrations led to a concomitant increase in the contents of starch and soluble sugars, and a decrease in the nitrate content in leaves. At very low CO(2), NR and GS expression decreased, in spite of high nitrate contents, whereas at normal and elevated CO(2) expression and activity were high although the nitrate content was very low. Thus, in cucumber, NR and GS expression appear to be dominated by sugar levels, rather than by nitrate contents.  相似文献   

18.
19.
The three tobacco (Nicotiana tabacum L.) S-adenosyl-L-methionine: o-diphenol-O-methyltransferases (OMTs; EC 2.1.1.6) were purified to homogeneity by affinity chromatography on adenosine-agarose. Amounts and catalytic actities of the enzymes were measured in tobacco leaves during the hypersensitive reaction to tobacco mosaic virus. The drastic increase in activity of each enzyme upon infection was shown to arise from the accumulation of enzymatic protein with constant specific enzymatic activity. Rates of OMT synthesis were determined from pulse-labeling experiments with L-[14C]leucine injected into the leaves. The specific radioactivities of the homogenous enzymes were compared in healthy and tobacco mosaic virus-infected tobacco. The results demonstrated that increase in OMT amounts is a consequence of de novo synthesis of the enzymes.Abbreviations DEAE diethylaminoethyl - OMT O-methyltransferase - SAM S-adenosyl-L-methionine - TMV tobacco mosaic virus  相似文献   

20.
The effects of boron (B) deficiency on several phenolics and enzyme activities involved in the biosynthesis of these compounds were investigated in tobacco plants (Nicotiana tabacum L. cv. Gatersleben). The levels of phenylpropanoids (mainly the caffeic acid esters, chlorogenic acid and its isomers) as well as phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and polyphenoloxidase (PPO, EC 1.14.18.1) activities were determined in plants subjected to B starvation for 1–7 d. The results presented here show that a short-term B deficiency causes both quantitative and qualitative changes in the phenolic metabolism of tobacco plants, which are especially evident after 3 d of B starvation. Although the concentration of B decreased from the onset of B starvation, root B level was less affected than leaf B by a short-term B deficiency. The concentration of phenylpropanoids as well as PAL and PPO activities increased mainly in the leaves of tobacco plants during B starvation. Moreover, leaves starved of B for 7 d showed the accumulation of new compounds, one of which was identified as caffeoylputrescine. In addition, a positive correlation between PAL activity and phenylpropanoid concentration was observed in tobacco leaves, especially after 5–7 d of B starvation, suggesting that an increase in PAL activity during B starvation could be responsible for the enhancement in the levels of phenylpropanoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号