首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experiments on rats have shown that antidepressant concentrations that cause 50% inhibition of 14C-NA and 3H-HT uptake by brain slices remain unchanged following prolonged administration of antidepressants (imipramine, pirazidole, harmane and its derivatives--C-153, C-307, C-394, C-395), as compared to the control. Electrical stimulation of brain slices upon long-term treatment of rats with antidepressants and preincubation with 14C-NA and 3H-HT enhanced presynaptic release of radioactive mark at concentrations of antidepressants (EC2) 3-14 times lower than those in the control animals. Long-term antidepressant administration reduces the inhibitory influence of clonidine and HT on presynaptic release of 14C-NA and 3H-HT by brain slices. It is suggested that long-term administration of antidepressants decreases the sensitivity of terminal axons of NA- and HT-ergic neurons to autoinhibitory effect of neurotransmitter release.  相似文献   

2.
—Cortex slices, synaptosomes and C-6 glioma cells were used to study [35S]taurine uptake and its electrically-stimulated release. After exposure to taurine at two concentrations, the synaptosome preparation subsequently derived from the slices contained 41% of the particle-bound taurine and 16% of the total in the tissue. The uptake of [14C]GABA by C-6 glioma cells was inhibited 3-fold more by β-alanine than by l -DABA, whilst synaptosome preparations showed the opposite pattern, l -DABA being 2 or 3 times more effective than β-alanine. [35S]Taurine uptake inhibition by l -DABA was low for synaptosomes and C-6 glioma, whereas β-alanine showed considerable effect on C-6 glioma (41%) and slices of white matter (ependyma; 50%). Synaptosome preparations showed little effect with β-alanine. When 30 min rather than 5 min incubations were employed, β-alanine depressed [35S]taurine uptake by cortex slices by 30%. Taurine was taken up by a calcium-dependent mechanism and subcellular fractionation indicated that the synaptosome fraction showed losses commensurate with the net taurine release when low stimulation currents were used.  相似文献   

3.
Recent studies have demonstrated that phorbol diesters enhance the release of various neurotransmitters. It is generally accepted that activation of protein kinase C (PKC) is the mechanism by which phorbol diesters act on neurotransmitter release. The action of PKC in neurotransmitter release is very likely mediated by phosphorylation of substrate proteins localized in the presynaptic nerve terminal. An important presynaptic substrate of PKC is B-50. To investigate whether B-50 mediates the actions of PKC in neurotransmitter release, we have studied B-50 phosphorylation in intact rat hippocampal slices under conditions that stimulate or inhibit PKC and neurotransmitter release. The slices were labelled with [32P]orthophosphate. After treatment, the slices were homogenized, B-50 was immunoprecipitated from the slice homogenate, and the incorporation of 32P into B-50 was determined. Chemical depolarization (30 mM K+) and the presence of phorbol diesters, conditions that stimulate neurotransmitter release, separately and in combination, also enhance B-50 phosphorylation. Polymyxin B, an inhibitor of PKC and neurotransmitter release, decreases concentration dependently the depolarization-induced stimulation of B-50 phosphorylation. The effects of depolarization are not detectable at low extracellular Ca2+ concentrations. It is concluded that in rat hippocampal slices B-50 may mediate the action of PKC in neurotransmitter release.  相似文献   

4.
The electrically stimulated release of [3H]acetylcholine from the parasympathetic nerve terminals of the rat iris in vitro is increased in a dose-dependent manner by scopolamine but is decreased by the tricyclic antidepressants amitriptyline and imipramine. The increased release in the presence of scopolamine seems to be due to the blockade of a presynaptic muscarinic autoreceptor that, in the drug-free state, inhibits the release of acetylcholine. However, at drug concentrations that should have comparable antimuscarinic potency, the antidepressants inhibit the release of acetylcholine. This suggests that the anticholinergic side effects of the antidepressants may be due to the reduced release of acetylcholine from parasympathetic nerve terminals as well as a possible direct postsynaptic muscarinic receptor blocking action. Whatever the mechanism of this action, the antidepressants do not have the same effect as scopolamine at the presynaptic muscarinic autoreceptor in the rat iris.  相似文献   

5.
The serotonergic system may play a role during general anesthesia but the effect of the volatile anesthetic halothane on the release of serotonin (5-HT) is not fully understood. Rat brain cortical slices were labeled with [3H]5-HT to investigate the effects of halothane on the release of this neurotransmitter from the central nervous system. Halothane induced an increase on the release of [3H]5-HT that was dependent on incubation time and anesthetic concentration (0.006, 0.012, 0.024, 0.036, 0.048 and 0.072 mM). This effect was independent of extracellular calcium and was not affected by tetrodotoxin (blocker of voltage dependent Na+ channels). In contrast, the halothane-evoked [3H]5-HT release was reduced by BAPTA-AM, a membrane-permeable BAPTA analog that chelates intracellular Ca2+. The anesthetic-induced [3H]5-HT release depends on the ryanodine-sensitive intracellular calcium store since it was blocked by dantrolene and azumolene (inhibitors of the calcium-release through ryanodine receptors) but was not affected by aminoethoxydiphenylborate (2-APB), an inhibitor of inositol 1,4,5-triphosphate receptor. The [3H]5-HT release induced by halothane comes mainly from the vesicular pool since it was reduced in about 70% by reserpine, a blocker of vesicular monoamine transporter. The halothane-evoked release of [3H]5-HT release is reduced by fluoxetine, an inhibitor of 5-HT uptake, and the volatile agent also decreased the uptake of [3H]5-HT into rat brain cortical slices. Moreover, a decrease on halothane-induced release of [3H]5-HT was also observed when the brain cortical slices were incubated at low temperature, which is known to interfere with the carrier-mediated release of the neurotransmitter. Ouabain, a Na+/K+ ATPase pump inhibitor, which induces 5-HT release through reverse transport, also decreased [3H]5-HT release induced by halothane, confirming the involvement of a carrier-mediated release of the neurotransmitter in the presence of halothane. In conclusion, these data suggest that halothane induces vesicular and carrier-mediated release of [3H]5-HT in rat brain cortical slices.  相似文献   

6.
We have previously shown that monoamine uptake blocker-type antidepressants with different chemical structure and selectivity are able to inhibit neuronal nicotinic acetylcholine receptors (nAChRs) in concentrations observed during antidepressant treatment. The mechanism of action of these drugs is similar to that of mecamylamine, a channel blocker-type antagonist of nAChRs. Since mecamylamine has been shown to block also NMDA receptors, our aim was to investigate whether the monoamine uptake blockers may affect the function of these ionotropic glutamate receptors.We studied, therefore the effect of the two most potent nicotinic antagonist antidepressants, the tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine on the NMDA-induced [3H]noradrenaline ([3H]NA) release from rat hippocampal slices. The NMDA-induced hippocampal [3H]NA release was effectively blocked by the selective, non-competitive NMDA antagonist MK-801 (IC50 = 0.54 μM), indicating that the [3H]NA release was mediated through NMDA receptors. This response was also dose-dependently inhibited by desipramine (IC50 = 14.57 μM) and fluoxetine (IC50 = 41.06 μM). The Na+-channel blocker TTX equally inhibited both the electrical stimulation- and the NMDA-evoked [3H]NA release (the IC50 was 55 nM and 66 nM, respectively), whereas the antidepressants inhibited only the NMDA-evoked response. These data suggest that the inhibitory effect of fluoxetine and desipramine on the NMDA-evoked [3H]NA release is exerted directly on NMDA receptors rather than indirectly on Na+-channels.Due to accumulation processes the concentration of desipramine and fluoxetine in the brain might be in the same range as the observed IC50 values, thus our data indicate that monoamine uptake blocker-type antidepressants are able to influence the function of NMDA receptors during antidepressant treatment, and the inhibitory effect on NMDA receptors might contribute to the therapeutic effects of these drugs.  相似文献   

7.
The theory that neurotransmitter release is regulated locally at the individual terminals of neurons has achieved a rapid and seemingly secure status in our understanding of neuronal function both in the periphery and in the central nervous system. This concept of negative feedback control through the monitoring of the perineuronal concentration of previously released transmitter has been extended to a multiplicity of transmitters and utilized to explain the mechanisms of action of diverse classes of drugs, ranging from antihypertensives to antidepressants. It is my view that negative feedback by terminal and by somadendritic receptors cannot account for the existing body of experimental work. Analyses of the profiles of action of agonists and antagonists, and of the per pulse release of transmitter in the absence of drugs in a variety if peripheral organ systems, as well as in superfused brain slices, demonstrates the need for alternate interpretations of the available data. Evidence is provided that the actions of agonists to inhibit transmitter release and that of antagonists to enhance release occur at different cellular loci and that the purported unitary action of these two classes that is so central to the validity of presynaptic theory is unsupportable.  相似文献   

8.
Thyroid autoregulation has been linked to an organified iodocompound. Since several iodolipids are produced by the gland their possible role in thyroid autoregulation was examined. The following pure synthetic compounds were prepared: 1) 14-iodo-15-hydroxy-5,8,11-eicosatrienoic acid (I-OH-A); 2) its omega lactone (IL-omega); 3) 5-hydroxy-6-iodo-8,11,14-eicosatrienoic acid delta lactone (IL-delta). Their action on iodine metabolism was studied. Iodine uptake was measured in calf thyroid slices. At 10(-4)M I-OH-A caused a 64% decrease in the T/M ratio, while IL-omega inhibited it by 36% and IL-delta was without effect. At 10(-5)M the inhibition was 44% for I-OH-A and 19% for IL-omega, while T3 was without action. A possible isotopic dilution effect was excluded, and no change in iodine efflux was observed. The inhibition by I-OH-A of iodide uptake was observed after only 15 min preincubation. This compound also decreased 125I accumulation in rats. In calf thyroid slices, I-OH-A at 10(-4)M, inhibited PB125I formation by 80%, IL-omega by 62% and IL-delta by 37%. T3 and arachidonic acid were without action. I-OH-A also caused a dose-dependent inhibition of TSH-stimulated iodide organification. The present results demonstrate, for the first time, that iodinated derivatives of arachidonic acid inhibit thyroid function and mimic the effect of iodide on thyroid autoregulation.  相似文献   

9.
Under optimised conditions for intoxication, botulinum neurotoxin type A was shown to inhibit approximately 90% of Ca2+-dependent K+-evoked release of [3H]acetylcholine, [3H]noradrenaline, and [3H]dopamine from rat cerebrocortical synaptosomes; cholinergic terminals were most susceptible. In each case, the dose-response curve for the neurotoxin was extended, with about 50% of evoked release being inhibited at approximately 10 nM whereas 200 nM was required for the maximal blockade. This may suggest some heterogeneity in the release process. The action of the toxin was time and temperature dependent and appeared to involve binding and sequestration steps prior to blockade of release. The neurotoxin failed to exert any effect on synaptosomal integrity or on Ca2+-independent release of the transmitters tested; it produced only minimal changes in neurotransmitter uptake although small secondary effects were detected with cholinergic terminals. Blockade by the neurotoxin of Ca2+-dependent resting release of transmitter was apparent; Sr2+, Ba2+, or high concentrations of Ca2+ restored the resting release of 3H-catecholamine but not [3H]acetylcholine. Interestingly, none of the latter conditions or 4-aminopyridine could reverse the toxin-induced blockade of evoked release. This lack of specificity in its action on synaptosomes, and other published findings, lead to the conclusion that toxin-sensitive component(s) exist in all nerve terminals that are concerned with transmitter release.  相似文献   

10.
Electrophysiological analysis of the effects of scorpion toxin I, one of the neurotoxins from the venom of the scorpion Androctonus australis Hector, upon crayfish neuromuscular junctions has shown that the toxin strongly associates with the nerve terminal to stimulate release of neurotransmitters.The biochemical approach has shown that the binding of scorpion toxin I to rat brain synaptosomes is accompanied by a decrease in their capacity to accumulate γ-aminobutyric acid. The main effect of the toxin is to stimulate neurotransmitter release. The apparent dissociation constant of the toxin-receptor complex is 0.1–0.2 μM at 22 °C. The rate of dissociation is so slow that complex formation seems to be quasi-irreversible. The “quasi-irreversibility” has also been observed in electrophysiological experiments with the crayfish neuromuscular junction. Tetrodotoxin prevents scorpion toxin I action if it is incubated with synaptosomes or with crayfish neuromuscular junctions before scorpion toxin I application. Tetrodotoxin does not reverse scorpion toxin action if it is added to the preparation after scorpion toxin I. Prevention of scorpion toxin action by tetrodotoxin permits measurements of binding characteristics of this toxin to synaptosomes. The dissociation constant of the tetrodotoxin-receptor complex is 2.2 nM at 22 °C. No cooperativity is observed in the binding. Because of its high affinity for synaptosomes (and the “quasi-irreversibility” of the binding), scorpion toxin I appears to be a potentially excellent tool for further studies of the molecular mechanism of neurotransmitter secretion.  相似文献   

11.
The influence of chemically different antidepressants on the uptake of 5-HT, dopamine and GABA by the rat brain synaptosomes was tested, using radioisotope technique in control and chronically stressed (14 days) animals. Drugs were more potent inhibitors of neurotransmitter uptake in synaptosomes of stressed animals, as compared to synaptosomes from control ones, the activity increasing proportionally to the changes in a particular uptake system. It is suggested that the drugs inhibit the uptake of neurotransmitters studied by changing the properties of synaptosomal membrane lipid bilayer. It is also evident that neurochemical properties of psychotropic drugs must be evaluated on the membranes from animals in the model of experimental psychopathology.  相似文献   

12.
Experimental data suggest that halothane anesthesia is associated with significant changes in dopamine (DA) concentration in some brain regions but the mechanism of this effect is not well known. Rat brain cortical slices were labeled with [3H]DA to further characterize the effects of halothane on the release of this neurotransmitter from the central nervous system. Halothane induced an increase on the release of [3H]DA that was dependent on incubation time and anesthetic concentration (0.012, 0.024, 0.048, 0.072 and 0.096 mM). This effect was independent of extracellular or intracellular calcium. In addition, [3H]DA release evoked by halothane was not affected by TTX (blocker of voltage-dependent Na+ channels) or reserpine (a blocker of vesicular monoamine transporter). These data suggest that [3H]DA release induced by halothane is non-vesicular and would be mediated by the dopamine transporter (DAT) and norepinephrine transporter (NET). GBR 12909 and nomifensine, inhibitors of DAT, decreased the release of [3H]DA evoked by halothane. Nisoxetine, a blocker of NET, reduced the release of [3H]DA induced by halothane. In addition, GBR 12909, nisoxetine and, halothane decrease the uptake of [3H]DA into rat brain cortical slices. A decrease on halothane-induced release of [3H]DA was also observed when the brain cortical slices were incubated at low temperature and low extracellular sodium, which are known to interfere with the carrier-mediated release of the neurotransmitter. Ouabain, a Na+/K+ ATPase pump inhibitor, which induces DA release through reverse transport, decreased [3H]DA release induced by halothane. It is suggested that halothane increases [3H]DA release in brain cortical slices that is mediated by DAT and NET present in the plasma membrane.  相似文献   

13.
Presynaptic modulation by opioids of electrically-evoked neurotransmitter release from superfused rat amygdala slices prelabelled with [3H]noradrenaline (NA) and [14C]choline was examined. Both [3H]NA and [14C]acetylcholine release were strongly inhibited by morphine, the mixed δ/μ-receptor agonist [ -Ala2, -Leu5]enkephalin (DADLE) and the highly selective μ-agonist [ -Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO), whereas the highly selective δ-agonist [ -Pen2, -Pen5]enkephalin and the κ-agonist bremazocine were without effect. The inhibitory effects were potently antagonized by naloxone but not by the selective δ-receptor antagonist fentanylisothiocyanate. When the selective uptake inhibitor desipramine was used to prevent uptake of [3H]NA into noradrenergic nerve terminals, but sparing the uptake into dopaminergic nerve terminals, the electrically evoked release of tritium was strongly inhibited by bremazocine but not by DADLE or DAMGO.

The data indicate, that in the amygdala transmitter release from dopaminergic nerve fibres is inhibited only via activation of κ-receptors, whereas transmitter release from noradrenergic and cholinergic nerve fibers is subjected to inhibition by opioids via activation of μ-receptors only. Regional differences and similarities of modulation of neurotransmitter release by opioids in the rat brain are briefly discussed.  相似文献   


14.
In order to investigate the dynamics of glutamate as a neurotransmitter and to avoid a complication by its metabolism, we studied the uptake and release of labeled non-metabolizabled-isomers of aspartate and glutamate in cerebral cortical slices and synaptosome preparation from guinea-pigs. The rate of uptake ofd-aspartate and glutamate was mutually inhibited in a non-competitive fashion, indicating that their uptake mechanisms are not exactly the same. By ouabain (0.05 mM), the uptake ofd-aspartate and glutamate into synaptosome preparation was less inhibited than that into cerebral slices. In synaptosome preparation most of the preloadedd-aspartate and glutamate was released by high-potassium (50 mM) stimulation, whereas in cerebral slices only a slight release was observed. However, when the slices were superfused with a medium free of sodium ions, which are absolutely necessary for the uptake, after preloaded with the labeled amino acids in the standard medium, a distinct release of radioactivity was induced by high-potassium stimulation. This potassium-induced release corresponded to only about 20% of the radioactivity accumulated in the slices. The accumulation ofd-aspartate and glutamate into cerebral slices was much larger on the basis of their protein content than that into synaptosome preparation, when a high concentration (1 mM) of the amino acids was added to the medium. These observations suggest that the uptake system ofd-aspartate and glutamate in cerebral slices is quite different from that in synaptosome preparation, and that the accumulation into cerebral slices is mainly localized in glial cells. In vivo the glial cell uptake is probably more important in removing the released neurotransmitter glutamate.Dedicated to Professor Yasuzo Tsukada.  相似文献   

15.
The major excitatory amino acid neurotransmitter in the mammalian brain is glutamate (GLU). GLU release from nerve terminals is both calcium-dependent and-independent, yet these mechanisms of release are not fully understood. Potassium, 4-aminopyridine (4-AP) and veratrine are commonly used depolarizing agents that were studied for their ability to stimulate GLU efflux from brain slices. These agents produced significant regional variations in GLU efflux from rat brain slices. Potassium was the most potent of the three secretogogues tested. 4-AP produced a significant GLU efflux only in the cerebellum. Veratrine produced consistent stimulation of GLU efflux from all brain regions tested. Potassium was the only depolarizing agent tested that stimulated GLU release from primary astroglial cultures of rat cerebral cortex. All three agents also demonstrated an ability to inhibit GLU reuptake in brain slice preparations. This data suggest that both GLU release and uptake are modulated in a regionally selective manner, and that commonly used depolarizing agents affect not only calcium-dependent neuronal release, but also uptake and glial responses.  相似文献   

16.
Peroxisomal proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor whose agonist, rosiglitazone has a neuroprotective effect to hippocampal neurons in pilocarpine-induced seizures. Hippocampal slice preparations treated in Mg2+ free medium can induce ictal and interictal-like epileptiform discharges, which is regarded as an in vitro model of N-methyl-D-aspartate (NMDA) receptor-mediated temporal lobe epilepsy (TLE). We applied rosiglitazone in hippocampal slices treated in Mg2+ free medium. The effects of rosiglitazone on hippocampal CA1-Schaffer collateral synaptic transmission were tested. We also examined the neuroprotective effect of rosiglitazone toward NMDA excitotoxicity on cultured hippocampal slices. Application of 10μM rosiglitazone significantly suppressed amplitude and frequency of epileptiform discharges in CA1 neurons. Pretreatment with the PPARγ antagonist GW9662 did not block the effect of rosiglitazone on suppressing discharge frequency, but reverse the effect on suppressing discharge amplitude. Application of rosiglitazone suppressed synaptic transmission in the CA1-Schaffer collateral pathway. By miniature excitatory-potential synaptic current (mEPSC) analysis, rosiglitazone significantly suppressed presynaptic neurotransmitter release. This phenomenon can be reversed by pretreating PPARγ antagonist GW9662. Also, rosiglitazone protected cultured hippocampal slices from NMDA-induced excitotoxicity. The protective effect of 10μM rosiglitazone was partially antagonized by concomitant high dose GW9662 treatment, indicating that this effect is partially mediated by PPARγ receptors. In conclusion, rosiglitazone suppressed NMDA receptor-mediated epileptiform discharges by inhibition of presynaptic neurotransmitter release. Rosiglitazone protected hippocampal slice from NMDA excitotoxicity partially by PPARγ activation. We suggest that rosiglitazone could be a potential agent to treat patients with TLE.  相似文献   

17.
D Sulzer  S Rayport 《Neuron》1990,5(6):797-808
Rewarding properties of psychostimulants result from reduced uptake and/or increased release of dopamine at mesolimbic synapses. As exemplified by cocaine, many psychostimulants act by binding to the dopamine uptake transporter. However, this does not explain the action of other psychostimulants, including amphetamine. As most psychostimulants are weak bases and dopamine uptake into synaptic vesicles uses an interior-acidic pH gradient, we examined the possibility that psychostimulants might inhibit acidification. Pharmacologically relevant concentrations of amphetamine as well as cocaine and phencyclidine rapidly reduced pH gradients in cultured midbrain dopaminergic neurons. To examine direct effects on vesicles, we used chromaffin granules. The three psychostimulants, as well as fenfluramine, imipramine, and tyramine, reduced the pH gradient, resulting in reduced uptake and increased release of neurotransmitter. Inhibition of acidification by psychoactive amines contributes to their pharmacology and may provide a principal molecular mechanism of action of amphetamine.  相似文献   

18.
The effects of CH3HgCl and HgCl2 on the evoked release of 3H from mouse striatal slices prelabelled with [3H]dopamine have been examined. CH3HgCl (10 microM) was observed to increase the L-glutamate-evoked release of [3H]dopamine, while HgCl2 (10 microM) had no effect. In contrast, CH3HgCl at concentrations up to 100 microM had no effect on the 25 mM K+-stimulated release of [3H]dopamine, whereas HgCl2 (100 microM) significantly reduced the 25 mM K+-stimulated release of [3H]dopamine. Thus CH3HgCl and HgCl2 have differential effects on the L-glutamate- and K+-stimulated release of [3H]dopamine from mouse striatal slices, suggesting that these compounds may have different sites and (or) mechanisms of action in altering neurotransmitter release. It is suggested that CH3HgCl may act predominantly at intracellular sites or at the level of the L-glutamate receptor, whereas the major site of action of HgCl2 may be the voltage-operated calcium channel.  相似文献   

19.
Abstract: Amphetamine-like psychostimulants are thought to produce rewarding effects by increasing dopamine levels at mesolimbic synapses. Paradoxically, dopamine uptake blockers, which generally increase extracellular dopamine, inhibit amphetamine-induced dopamine overflow. This effect could be due to either inhibition of amphetamine uptake or inhibition of dopamine efflux through the transporter (reverse transport). We used weak bases and dopamine uptake blockers in ventral midbrain neuron cultures to separate the effects on blockade of amphetamine uptake from reverse transport of dopamine. Amphetamine, ammonium chloride, tributylamine, and monensin, at concentrations that produce similar reductions in acidic pH gradients, increased dopamine release. This effect was inhibited by uptake blockers. Although in the case of amphetamine the inhibition of release could have been due to blockade of amphetamine uptake, inhibition also occurred with weak bases that are not transporter substrates. This suggests that reduction of vesicular pH gradients increases cytoplasmic dopamine which in turn promotes reverse transport. Consistent with this model, extracellular 3,4-dihydroxyphenylacetic acid was increased by ammonium chloride and monensin, as would be expected with elevated cytoplasmic dopamine levels. These findings extend the weak base mechanism of amphetamine action, in which amphetamine reduces vesicular pH gradients resulting in increased cytoplasmic dopamine that promotes reverse transport.  相似文献   

20.
Astrocyte Gq GPCR and IP3 receptor-dependent Ca2+ elevations occur spontaneously in situ and in vivo. These events vary considerably in size, often remaining confined to small territories of astrocyte processes called “microdomains” and sometimes propagating over longer distances that can include the soma. It has remained unclear whether these events are driven by constitutive (basal) GPCR signaling activity, neuronal action potential-dependent or quantal vesicular release, or some combination of these mechanisms. Here, we applied manipulations to increase or inhibit neuronal vesicular neurotransmitter release together with low-level stimulation of Schaffer collaterals in acute mouse hippocampal slices in an effort to determine the mechanisms underlying spontaneous astrocyte Ca2+ events. We found no significant change in spontaneous microdomain astrocyte Ca2+ elevations when neuronal action potentials were significantly enhanced or blocked. The astrocyte Ca2+ activity was also not affected by inhibitors of group I mGluRs. However, blockade of miniature neurotransmitter release using Bafilomycin A1 significantly reduced the frequency of microdomain astrocyte Ca2+ elevations. We then tested whether astrocyte Ca2+ microdomains can be evoked by low intensity SC stimulation. Importantly, microdomains could not be reproduced even using single, low intensity pulses to the SCs at a minimum distance from the astrocyte. Evoked astrocyte Ca2+ responses most often included the cell soma, were reduced by group I mGluR antagonists, and were larger in size compared to spontaneous Ca2+ microdomains. Overall, our findings suggest that spontaneous microdomain astrocyte Ca2+ elevations are not driven by neuronal action potentials but require quantal release of neurotransmitter which cannot be replicated by stimulation of Schaffer collaterals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号