首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prothyrotropin-releasing hormone (pro-TRH) is initially cleaved by the prohormone convertase-1/3 (PC1/3) in the trans-Golgi network generating N- and C-terminal intermediate forms that are then packed into secretory vesicles. However, it is not known whether these peptides are differentially sorted within the secretory pathway. This is of key importance because the processing products of several prohormones fulfill different biological functions. Using AtT20 cells stably transfected with prepro-TRH cDNA, we found that two specific N- and C-terminal peptides were located in different vesicles. Furthermore, the C-terminal pro-TRH-derived peptides were more efficiently released in response to KCl and norepinephrine, a natural secretagogue of TRH. Similar sorting and secretion of N- and C-terminal peptides occurs in vivo. When we blocked the initial proteolytic processing by a mutagenic approach, the differential sorting and secretion of these peptides were prevented. In summary, our data show that pro-TRH-derived peptides are differentially sorted within the secretory pathway and that the initial cleavage in the trans-Golgi network is key to this process. This could be a common mechanism used by neuroendocrine cells to regulate independently the secretion of different bioactive peptides derived from the same gene product.  相似文献   

2.
Vacuolar H+-ATPases (V-ATPases) are multisubunit enzymes that acidify various intracellular organelles, including secretory pathway compartments. We have examined the effects of the specific V-ATPase inhibitor bafilomycin A1 (Baf) on the intracellular transport, sorting, processing and release of a number of neuroendocrine secretory proteins in primary Xenopus intermediate pituitary cells. Ultrastructural examination of Baf-treated intermediate pituitary cells revealed a reduction in the amount of small dense-core secretory granules and the appearance of vacuolar structures in the trans-Golgi area. Pulse-chase incubations in combination with immunoprecipitation analysis showed that in treated cells, the proteolytic processing of the newly synthesized prohormone proopiomelanocortin, prohormone convertase PC2 and secretogranin III (SgIII) was inhibited, and an intracellular accumulation of intact precursor forms and intermediate cleavage products became apparent. Moreover, we found that treated cells secreted considerable amounts of a PC2 processing intermediate and unprocessed SgIII in a constitutive fashion. Collectively, these data indicate that in the secretory pathway, V-ATPases play an important role in creating the microenvironment that is essential for proper transport, sorting, processing and release of regulated secretory proteins.  相似文献   

3.
The ciliated protozoan Paramecium has a regulated secretory system amenable to genetic analysis. The secretory storage granules, known as trichocysts, enclose a crystalline matrix with a genetically determined shape whose biogenesis involves proteolytic maturation of a family of precursor molecules into a heterogeneous set of small acidic polypeptides that crystallize within the maturing vesicles. We have developed an original pulse-chase protocol for monoxenic Paramecium cultures using radiolabeled bacteria to study the processing of trichocyst matrix proteins in wild-type and mutant cells. In wild-type cells, proteolytic processing is blocked in the presence of monensin and otherwise rapidly completed after approximately 20 min of chase, suggesting that the conversion occurs in the trans-Golgi and/or in small vesicles soon after sorting to the regulated pathway, probably before crystallization begins. In trichless mutant cells, which contain no visible trichocysts, secretory proteins are synthesized but not processed and we report constitutive secretion of the uncleaved precursor molecules. The mutation thus appears to affect sorting to the regulated pathway and should prove useful for analysis of the sorting machinery and of the relationship between sorting and proteolytic processing of secretory proteins. In mutants bearing misshapen trichocysts with poorly crystallized contents (tam33, tam38, stubbyA), the proteolytic processing of the trichocyst matrix proteins appears to be normal, while both pulse-chase and morphological data indicate that intracellular transport is perturbed, probably between ER and Golgi. Precursor molecules are present in the mutant trichocysts but not in wild-type trichocysts and may account for the defective crystallization. Our analysis of these mutants suggests that the temporal coordination of intracellular traffic plays a regulatory role in granule maturation.  相似文献   

4.
E Chanat  U Weiss  W B Huttner    S A Tooze 《The EMBO journal》1993,12(5):2159-2168
The role of the single, highly conserved disulfide bond in chromogranin B (secretogranin I) on the sorting of this regulated secretory protein to secretory granules was investigated in the neuroendocrine cell line PC12. Treatment of PC12 cells with dithiothreitol (DTT), a membrane permeable thiol reducing agent known to prevent disulfide bond formation in intact cells, resulted in the secretion of newly synthesized chromogranin B, but only slightly decreased the intracellular storage of newly synthesized secretogranin II, a regulated secretory protein devoid of cysteines. The secretion of newly synthesized chromogranin B in the presence of DTT occurred with similar kinetics to those of a heparan sulfate proteoglycan, a known marker of the constitutive secretory pathway in PC12 cells. Analysis of the various secretory vesicles derived from the trans-Golgi network (TGN) indicated that DTT treatment diverted newly synthesized chromogranin B to constitutive secretory vesicles, whereas the packaging of secretogranin II into immature secretory granules was unaffected by the reducing agent. The chromogranin B molecules diverted to constitutive secretory vesicles, in contrast to those stored in secretory granules, were found to contain free sulfhydryl residues. The effect of DTT on chromogranin B occurred in the TGN rather than in the endoplasmic reticulum. We conclude that the sorting of CgB in the TGN to secretory granules is dependent upon the integrity of its single disulfide bond.  相似文献   

5.
Murine hepatitis virus (strain A59), (MHV-A59) is a coronavirus that buds into pre-Golgi compartments and then exploits the exocytic pathway of the host cell to reach the exterior. The fibroblastic cells in which replication of this virus is usually studied have only a constitutive exocytic pathway that the virus uses. MHV-A59 also infects, albeit inefficiently, AtT20 cells, murine pituitary tumor cells with a regulated as well as a constitutive exocytic pathway. Here we examine AtT20 cells at early times after the infection, when the Golgi apparatus retains its morphological and biochemical integrity. We observe that progeny coronavirus and secretory protein destined for the secretory granules of the regulated exocytic pathway traverse the same Golgi stacks and accumulate in the trans-Golgi network. Their pathways diverge at this site, the condensed secretory proteins including the ACTH going to the secretory granules and the coronavirus to post-Golgi transport vesicles devoid of ACTH. On very rare occasions there is missorting such that aggregates of condensed secretory proteins and viruses occur together in post-Golgi vesicles. We conclude that the constitutive and regulated exocytic pathways, identified respectively by the progeny virions and the secretory protein ACTH, diverge at the exit from the trans-Golgi network.  相似文献   

6.
We have investigated the sorting and packaging of secretory proteins into secretory granules by an immunological approach. An mAb against secretogranin I (chromogranin B), a secretory protein costored with various peptide hormones and neuropeptides in secretory granules of many endocrine cells and neurons, was expressed by microinjection of its mRNA into the secretogranin I-producing cell line PC12. An mAb against the G protein of vesicular stomatitis virus--i.e., against an antigen not present in PC12 cells--was expressed as a control. The intracellular localization and the secretion of the antibodies was studied by double-labeling immunofluorescence using the conventional and the confocal microscope, as well as by pulse-chase experiments. The secretogranin I antibody, like the control antibody, was transported along the secretory pathway to the Golgi complex. However, in contrast to the control antibody, which was secreted via the constitutive pathway, the secretogranin I antibody formed an immunocomplex with secretogranin I, was packaged into secretory granules, and was released by regulated exocytosis. Our results show that a constitutive secretory protein, unaltered by genetic engineering, can be diverted to the regulated pathway of secretion by its protein-protein interaction with a regulated secretory protein. The data also provide the basis for immunologically studying the role of luminally exposed protein domains in the biogenesis and function of regulated secretory vesicles.  相似文献   

7.
En route through the secretory pathway of neuroendocrine cells, prohormones pass a series of membrane-bounded compartments. During this transport, the prohormones are sorted to secretory granules and proteolytically cleaved to bioactive peptides. Recently, progress has been made in a number of aspects concerning secretory protein transport and sorting, particularly with respect to transport events in the early regions of the secretory pathway. In this review we will deal with some of these aspects, including: i) selective exit from the endoplasmic reticulum via COPII-coated vesicles and the potential role of p24 putative cargo receptors in this process, ii) cisternal maturation as an alternative model for protein transport through the Golgi complex, and iii) the mechanisms that may be involved in the sorting of regulated secretory proteins to secretory granules. Although much remains to be learned, interesting new insights into the functioning of the secretory pathway have been obtained.  相似文献   

8.
Chromogranins are a family of regulated secretory proteins that are stored in secretory granules in endocrine and neuroendocrine cells and released in response to extracellular stimulation (regulated secretion). A conserved N-terminal disulfide bond is necessary for sorting of chromogranins in neuroendocrine PC12 cells. Surprisingly, this disulfide bond is not necessary for sorting of chromogranins in endocrine GH4C1 cells. To investigate the sorting mechanism in GH4C1 cells, we made several mutant forms removing highly conserved N- and C-terminal regions of bovine chromogranin A. Removing the conserved N-terminal disulfide bond and the conserved C-terminal dimerization and tetramerization domain did not affect the sorting of chromogranin A to the regulated secretory pathway. In contrast, removing the C-terminal 90 amino acids of chromogranin A caused rerouting to the constitutive secretory pathway and impaired aggregation properties as compared with wild-type chromogranin A. Since this mutant was sorted to the regulated secretory pathway in PC12 cells, these results demonstrate that chromogranins contain independent N- and C-terminal sorting domains that function in a cell type-specific manner. Moreover, this is the first evidence that low pH/calcium-induced aggregation is necessary for sorting of a chromogranin to the regulated secretory pathway of endocrine cells.  相似文献   

9.
Production and secretion of hormones by the pituitary involve highly orchestrated intracellular transport and sorting steps. Hormone precursors are routed through a series of compartments before being packaged in secretory granules. These highly dynamic carriers play crucial roles in both prohormone processing and peptide exocytosis. We have employed the ACTH-secreting AtT-20 cell line to study the membrane sorting events that confer functionality (prohormone activation and regulated exocytosis) to these secretory carriers. The unique ability of granules to promote prohormone processing is attributed to their acidic interior. Using a novel avidin-targeted fluorescence ratio imaging technique, we have found that the trans-Golgi of live AtT-20 cells maintains a mildly acidic (approximately pH 6.2) interior. Budding of secretory granules causes the lumen to acidify to 相似文献   

10.
In the beta-cells of pancreatic islets, insulin is stored as the predominant protein within storage granules that undergo regulated exocytosis in response to glucose. By pulse-chase analysis of radiolabeled protein condensation in beta-cells, the formation of insoluble aggregates of regulated secretory protein lags behind the conversion of proinsulin to insulin. Condensation occurs within immature granules (IGs), accounting for passive protein sorting as demonstrated by constitutive-like secretion of newly synthesized C- peptide in stoichiometric excess of insulin (Kuliawat, R., and P. Arvan. J. Cell Biol. 1992. 118:521-529). Experimental manipulation of condensation conditions in vivo reveals a direct relationship between sorting of regulated secretory protein and polymer assembly within IGs. By contrast, entry from the trans-Golgi network into IGs does not appear especially selective for regulated secretory proteins. Specifically, in normal islets, lysosomal enzyme precursors enter the stimulus-dependent secretory pathway with comparable efficiency to that of proinsulin. However, within 2 h after synthesis (the same period during which proinsulin processing occurs), newly synthesized hydrolases are fairly efficiently relocated out of the stimulus- dependent pathway. In tunicamycin-treated islets, while entry of new lysosomal enzymes into the regulated secretory pathway continues unperturbed, exit of nonglycosylated hydrolases from this pathway does not occur. Consequently, the ultimate targeting of nonglycosylated hydrolases in beta-cells is to storage granules rather than lysosomes. These results implicate a post-Golgi mechanism for the active removal of lysosomal hydrolases away from condensed granule contents during the storage process for regulated secretory proteins.  相似文献   

11.
Targeting proteins to their correct cellular location is crucial for their biological function. In neuroendocrine cells, proteins can be secreted by either the constitutive or the regulated secretory pathways but the mechanism(s) whereby proteins are sorted into either pathway is unclear. In this review we discuss the possibility that sorting is either an active process occurring at the level of the trans-Golgi network, or that sorting occurs passively in the immature granules, The possible involvement of protein-lipid interactions in the sorting process is also raised.  相似文献   

12.
The formation of secretory granules and regulated secretion are generally assumed to occur only in specialized endocrine, neuronal, or exocrine cells. We discovered that regulated secretory proteins such as the hormone precursors pro-vasopressin, pro-oxytocin, and pro-opiomelanocortin, as well as the granins secretogranin II and chromogranin B but not the constitutive secretory protein alpha(1)-protease inhibitor, accumulate in granular structures at the Golgi and in the cell periphery in transfected COS-1 fibroblast cells. The accumulations were observed in 30-70% of the transfected cells expressing the pro-hormones and for virtually all of the cells expressing the granins. Similar structures were also generated in other cell lines believed to be lacking a regulated secretory pathway. The accumulations resembled secretory granules morphologically in immunofluorescence and electron microscopy. They were devoid of markers of the endoplasmic reticulum, endosomes, and lysosomes but in part stained positive for the trans-Golgi network marker TGN46, consistent with their formation at the trans-Golgi network. When different regulated proteins were coexpressed, they were frequently found in the same granules, whereas alpha(1)-protease inhibitor could not be detected in accumulations formed by secretogranin II, demonstrating segregation of regulated from constitutive secretory proteins. In pulse-chase experiments, significant intracellular storage of secretogranin II and chromogranin B was observed and secretion of retained secretogranin II was stimulated with the calcium ionophore A23187. The results suggest that expression of regulated cargo proteins is sufficient to generate structures that resemble secretory granules in the background of constitutively secreting cells, supporting earlier proposals on the mechanism of granule formation.  相似文献   

13.
The constitutive and regulated secretory pathways represent the classical routes for secretion of proteins from neuroendocrine cells. Selective aggregation of secretory granule constituents in an acidic, bivalent cation-rich environment is considered to be a prerequisite for sorting to the regulated secretory pathway. The effect of selective vacuolar H+-ATPase (V-ATPase) inhibitor bafilomycin A1 on the pH gradient along the secretory pathway was used here to study the role of acidification on the trafficking of the regulated secretory protein chromogranin A (CgA) in PC12 cells. Sorting of CgA was assessed by three-dimensional deconvolution microscopy, subcellular fractionation, and secretagogue-stimulated release, examining a series of full-length or truncated domains of human CgA (CgA-(1-115), CgA-(233-439)) fused to either green fluorescent protein or to a novel form of secreted embryonic alkaline phosphatase (EAP). We show that a full-length CgA/EAP chimera is sorted to chromaffin granules for exocytosis. Inhibition of V-ATPase by bafilomycin A1 markedly reduced the secretagogue-stimulated release of CgA-EAP by perturbing sorting of the chimera (at the trans-Golgi network or immature secretory granule) rather than the late steps of exocytosis. The effect of bafilomycin A1 on CgA secretion depends on a sorting determinant located within the amino terminus (CgA-(1-115)) but not the C-terminal region of the granin. Moreover, examination of chromaffin granule abundance in PC12 cells exposed to bafilomycin A1 reveals a substantial decrease in the number of dense-core vesicles. We propose that a V-ATPase-mediated pH gradient in the secretory pathway is an important factor for the formation of dense-core granules by regulating the ability of CgA to form aggregates, a crucial step that may underlie the granulogenic function of the protein.  相似文献   

14.
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.  相似文献   

15.
The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfate-labeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory organellar intermediates in the biogenesis of the mature secretory granules which accumulate in the cell. Immature secretory granules were converted to mature secretory granules with a half-time of approximately 45 min. This conversion entailed an increase in their size, implying that the maturation of secretory granules includes a fusion event involving immature secretory granules. Pulse-chase labelling of PC12 cells followed by stimulation with high K+, which causes the release of secretogranin II, showed that not only mature, but also immature secretory granules were capable of undergoing regulated exocytosis. The kinetics of secretion of secretogranin II, as well as those of a constitutively secreted heparan sulfate proteoglycan, were reduced by treatment of PC12 cells with nocodazole, suggesting that both secretory granules and constitutive secretory vesicles are transported to the plasma membrane along microtubules. Our results imply that certain membrane proteins, e.g., those involved in the fusion of post-TGN vesicles with the plasma membrane, are sorted upon exit from the TGN, whereas other membrane proteins, e.g., those involved in the interaction of post-TGN vesicles with the cytoskeleton, may not be sorted.  相似文献   

16.
Rat prothyrotropin releasing hormone (proTRH) is processed in the regulated secretory pathway (RSP) of neuroendocrine cells yielding five TRH peptides and several non-TRH peptides. It is not understood how these peptides are targeted to the RSP. We show here that a disulfide bond in the carboxy-terminus of proTRH plays an important role in the trafficking of this prohormone. Recombinant proTRH was observed to migrate faster on a native gel when treated with dithiothreitol (DTT) suggesting the presence of a disulfide bond. In vitro disulfide bond formation was prevented either by DTT treatment or by mutating cysteines 213 and 219 to glycines. In both cases the peptides derived from these mutants exhibited increased constitutive release and processing defects when expressed in AtT20 cells, a neuroendocrine cell line used in our prior studies on proTRH processing. Immunocytochemistry revealed that wild-type proTRH and mutant proTRH localized in a punctate pattern typical of proteins sorted to the regulated secretory pathway. These data suggest that the proposed disulfide bond of proTRH is involved in sorting of proTRH-derived peptides and in their retention within maturing secretory granules. This is the first evidence of structural motifs being important for the sorting of proTRH.  相似文献   

17.
Newly synthesized prohormones and their processing enzymes transit through the same compartments before being packaged into regulated secretory granules. Despite this coordinated intracellular transport, prohormone processing does not occur until late in the secretory pathway. In the mouse pituitary AtT-20 cell line, conversion of pro-opiomelanocortin (POMC) to mature adrenocorticotropic hormone involves the prohormone convertase PC1. The mechanism by which this proteolytic processing is restricted to late secretory compartments is unknown; PC1 activity could be regulated by compartment-specific activators/inhibitors, or through changes in the ionic milieu that influence its activity. By arresting transport in a semi-intact cell system, we have addressed whether metabolically labeled POMC trapped in early secretory compartments can be induced to undergo conversion if the ionic milieu in these compartments is experimentally manipulated. Prolonged incubation of labeled POMC trapped in the endoplasmic reticulum or Golgi/trans-Golgi network did not result in processing, thereby supporting the theory that processing is normally a post-Golgi/trans-Golgi network event. However, acidification of these compartments allowed effective processing of POMC to the intermediate and mature forms. The observed processing increased sharply at a pH below 6.0 and required millimolar calcium, regardless of the compartment in which labeled POMC resided. These conditions also resulted in the coordinate conversion of PC1 from the 84/87 kDa into the 74-kDa and 66-kDa forms. We propose that POMC processing is predominantly restricted to acidifying secretory granules, and that a change in pH within these granules is both necessary and sufficient to activate POMC processing.  相似文献   

18.
《The Journal of cell biology》1996,135(5):1261-1275
The proprotein convertase PC5 is encoded by multiple mRNAs, two of which give rise to the COOH-terminal variant isoforms PC5-A (915 amino acids [aa]) and PC5-B (1877 aa). To investigate the differences in biosynthesis and sorting between these two proteins, we generated stably transfected AtT-20 cell lines expressing each enzyme individually and examined their respective processing pattern and subcellular localization. Biosynthetic analyses coupled to immunofluorescence studies demonstrated that the shorter and soluble PC5-A is sorted to regulated secretory granules. In contrast, the COOH- terminally extended and membrane-bound PC5-B is located in the Golgi. The presence of a sorting signal in the COOH-terminal 38 amino acids unique to PC5-A was demonstrated by the inefficient entry into the regulated secretory pathway of a mutant lacking this segment. EM of pancreatic cells established the presence of immunoreactive PC5 in glucagon-containing granules, demonstrating the sorting of this protein to dense core secretory granules in endocrine cells. Thus, a single PC5 gene generates COOH-terminally modified isoforms with different sorting signals directing these proteins to distinct subcellular localization, thereby allowing them to process their appropriate substrates.  相似文献   

19.
Among the prohormone convertases, PC2 is unique in that it specifically binds to the neuroendocrine-specific protein 7B2 in the endoplasmic reticulum (ER) and is activated late in the regulated secretory pathway of neuroendocrine cells. Several roles, sometimes contradictory, have been suggested for 7B2 with regard to PC2 cellular fate. Thus, 7B2 was proposed to act as a PC2 chaperone in the ER, or to facilitate 7B2 transport from the ER to the trans-Golgi network and to be necessary for proPC2 activation, or to inhibit PC2 enzymatic activity until the latter reaches the secretory granules. To gain insight into the function of 7B2, we sought to block its expression in PC2-expressing endocrine cells using antisense strategies. We have previously shown that the endocrine rMTC 6-23 cell line expresses PC2 and that the enzyme is responsible for the processing of pro-neurotensin/neuromedin N (proNT/NN). Here, we show that rMTC 6-23 cells express 7B2 and that the protein was coordinately induced with PC2 and proNT/NN by dexamethasone. Stable transfection of rMTC 6-23 cells with 7B2 antisense cDNA led to a marked reduction (>90%) in 7B2 levels. ProPC2 was expressed to normal levels and cleaved to yield a PC2 form that was constitutively released, was not stored within secretory granules and was unable to process proNT/NN. We conclude that 7B2 is essential for the sorting and activation of PC2 into the regulated secretory pathway of endocrine cells.  相似文献   

20.
A sulfated alpha1-antitrypsin (AAT), thought to be a default secretory pathway marker, is not stored in secretory granules when expressed in neuroendocrine PC12 cells. In search of a constitutive secretory pathway marker for pancreatic beta cells, we produced INS-1 cells stably expressing wild-type AAT. Because newly synthesized AAT arrives very rapidly in the Golgi complex, kinetics alone cannot resolve AAT release via distinct secretory pathways, although most AAT is secreted within a few hours and virtually none is stored in mature granules. Nevertheless, from pulse-chase analyses, a major fraction of newly synthesized AAT transiently exhibits secretogogue-stimulated exocytosis and localizes within immature secretory granules (ISGs). This trafficking occurs without detectable AAT polymerization or binding to lipid rafts. Remarkably, in a manner not requiring its glycans, all of the newly synthesized AAT is then removed from granules during their maturation, leading mostly to constitutive-like AAT secretion, whereas a smaller fraction (approximately 10%) goes on to lysosomes. Secretogogue-stimulated ISG exocytosis reroutes newly synthesized AAT directly into the medium and prevents its arrival in lysosomes. These data are most consistent with the idea that soluble AAT abundantly enters ISGs and then is efficiently relocated to the endosomal system, from which many molecules undergo constitutive-like secretion while a smaller fraction advances to lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号