首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Putative high-affinity nitrate (NO3-) transporter genes, designated Nrt2;1At and Nrt2;2At, were isolated from Arabidopsis thaliana by RT-PCR using degenerate primers. The genes shared 86% and 89% identity at the amino acid and nucleotide levels, respectively, while their proteins shared 30-73% identities with other eukaryotic high-affinity NO3- transporters. Both genes were induced by NO3-, but Nrt2;1At gene expression was not apparent in 2- and 5-day-old plants. By 10 days, and thereafter, Nrt2;1At gene expression in roots was substantially higher than for the Nrt2;2At gene. Root Nrt2;1At expression levels were strongly correlated with inducible high-affinity 13NO3- influx into intact roots under several treatment conditions. The use of inhibitors of N assimilation indicated that downregulation of Nrt2;1At expression was mediated by NH4+, gln and other amino acids.  相似文献   

2.
3.
An investigation was carried out to assess the effect of nitrate supply on the root plasma membrane (PM) H+-ATPase of etiolated maize (Zea mays L.) seedlings grown in hydroponics. The treatment induced higher uptake rates of the anion and the expression of a putative high-affinity nitrate transporter gene (ZmNRT2.1), the first to be identified in maize. Root PM H+-ATPase activity displayed a similar time-course pattern as that of net nitrate uptake and investigations were carried out to determine which of the two isoforms reported to date in maize, MHA1 and 2, responded to the treatment. MHA1 was not expressed under the conditions analysed. Genome analysis revealed that MHA2, described as the most abundant form in all maize tissues, was not present in the maize hybrid investigated, but a similar form was found instead and named MHA3. A second gene (named MHA4) was also identified and partially sequenced. Both genes, classified as members of the PM H+-ATPase subfamily II, responded to nitrate supply, although to different degrees: MHA4, in particular, proved more sensitive than MHA3, with a greater up- and down-regulation in response to the treatment. Increased expression of subfamily II genes resulted in higher steady-state levels of the enzyme in the root tissues and enhanced ATP-hydrolysing activity. The results support the idea that greater proton-pumping activity is required when nitrate inflow increases and suggest that nitrate may be the signal triggering the expression of the two members of PM H+-ATPase subfamily II.  相似文献   

4.
? In this paper, we conducted a detailed analysis of the ZIP family transporter, NcZNT1, in the zinc (Zn)/cadmium (Cd) hyperaccumulating plant species, Noccaea caerulescens, formerly known as Thlaspi caerulescens. NcZNT1 was previously suggested to be the primary root Zn/Cd uptake transporter. Both a characterization of NcZNT1 transport function in planta and in heterologous systems, and an analysis of NcZNT1 gene expression and NcZNT1 protein localization were carried out. ? We show that NcZNT1 is not only expressed in the root epidermis, but also is highly expressed in the root and shoot vasculature, suggesting a role in long-distance metal transport. Also, NcZNT1 was found to be a plasma membrane transporter that mediates Zn but not Cd, iron (Fe), manganese (Mn) or copper (Cu) uptake into plant cells. ? Two novel regions of the NcZNT1 promoter were identified which may be involved in both the hyperexpression of NcZNT1 and its ability to be regulated by plant Zn status. ? In conclusion, we demonstrate here that NcZNT1 plays a role in Zn and not Cd uptake from the soil, and based on its strong expression in the root and shoot vasculature, could be involved in long-distance transport of Zn from the root to the shoot via the xylem.  相似文献   

5.
6.
K H Liu  C Y Huang    Y F Tsay 《The Plant cell》1999,11(5):865-874
Higher plants have both high- and low-affinity nitrate uptake systems. These systems are generally thought to be genetically distinct. Here, we demonstrate that a well-known low-affinity nitrate uptake mutant of Arabidopsis, chl1, is also defective in high-affinity nitrate uptake. Two to 3 hr after nitrate induction, uptake activities of various chl1 mutants at 250 microM nitrate (a high-affinity concentration) were only 18 to 30% of those of wild-type plants. In these mutants, both the inducible phase and the constitutive phase of high-affinity nitrate uptake activities were reduced, with the inducible phase being severely reduced. Expressing a CHL1 cDNA driven by the cauliflower mosaic virus 35S promoter in a transgenic chl1 plant effectively recovered the defect in high-affinity uptake for the constitutive phase but not for the induced phase, which is consistent with the constitutive level of CHL1 expression in the transgenic plant. Kinetic analysis of nitrate uptake by CHL1-injected Xenopus oocytes displayed a biphasic pattern with a Michaelis-Menten Km value of approximately 50 microM for the high-affinity phase and approximately 4 mM for the low-affinity phase. These results indicate that in addition to being a low-affinity nitrate transporter, as previously recognized, CHL1 is also involved in both the inducible and constitutive phases of high-affinity nitrate uptake in Arabidopsis.  相似文献   

7.
A deletion mutant of Listeria monocytogenes lacking OpuC, an ABC transporter responsible for the uptake of the compatible solute carnitine, was constructed and carnitine transport assays confirmed that carnitine transport was defective in this mutant. However, the mutant retained the ability to derive osmoprotection from carnitine, suggesting the presence of a second uptake system for this compatible solute. Measurement of intracellular carnitine pools during balanced growth confirmed that the opuC mutant accumulated high levels of carnitine. These pools were only achieved in the mutant when high levels (1 mM) of carnitine were present extracellularly. When a lower level (100 microM) was supplied in the medium the mutant failed to accumulate a substantial intracellular pool and failed to derive osmoprotection from carnitine. These data suggest the presence of a second low affinity carnitine uptake system in this osmotolerant pathogen.  相似文献   

8.
The potyvirus cylindrical inclusion (CI) protein, an RNA helicase required for genome replication, was analyzed genetically using alanine-scanning mutagenesis. Thirty-one mutations were introduced into the CI protein coding region of modified tobacco etch virus (TEV) genomes expressing either β-glucuronidase or green fluorescent protein reporters. Twelve of the mutants were replication-defective in protoplast inoculation assays. Among the 19 replication-competent mutants, several possessed cell-to-cell or long-distance movement defects in tobacco plants. Two mutants, AS1 and AS8, were restricted to single cells in inoculated leaves despite genome amplification levels that were equivalent to that of parental virus. Other mutants, such as AS9 and AS14, were able to move cell to cell slowly but were debilitated in long-distance movement. These data provide genetic evidence for a direct role of CI protein in potyvirus intercellular movement, and for distinct roles of the CI protein in genome replication and movement. In combination with high-resolution ultrastructural analyzes and previous genetic data, these results support a model in which CI protein interacts directly with plasmodesmata and capsid protein-containing ribonucleoprotein complexes to facilitate potyvirus cell-to-cell movement.  相似文献   

9.
OsNRT1.1a is a low-affinity nitrate(NO_3~-) transporter gene. In this study, another mRNA splicing product, OsNRT1.1b,putatively encoding a protein with six transmembrane domains, was identified based on the rice genomic database and bioinformatics analysis. OsNRT1.1a/OsNRT1.1b expression in Xenopus oocytes showed OsNRT1.1a-expressing oocytes accumulated ~(15)N levels to about half as compared to OsNRT1.1bexpressing oocytes. The electrophysiological recording of OsNRT1.1b-expressing oocytes treated with 0.25 mM NO_3~- confirmed ~(15)N accumulation data. More functional assays were performed to examine the function of OsNRT1.1b in rice. The expression of both OsNRT1.1a and OsNRT1.1b was abundant in roots and downregulated by nitrogen(N) deficiency. The shoot biomass of transgenic rice plants with OsNRT1.1a or OsNRT1.1b overexpression increased under various N supplies under hydroponic conditions compared to wild-type(WT). The OsNRT1.1a overexpression lines showed increased plant N accumulation compared to the WT in 1.25 mM NH_4NO_3 and 2.5 mM NO_3~- or NH_4~+ treatments, but not in 0.125 mM NH_4NO_3.However, OsNRT1.1b overexpression lines increased total N accumulation in all N treatments, including 0.125 m M NH_4NO_3,suggesting that under low N condition, OsNRT1.1b would accumulate more N in plants and improve rice growth, but also that OsNRT1.1a had no such function in rice plants.  相似文献   

10.
Molybdenum (Mo) is an essential nutrient for plants, and is required for nitrogenase activity of legumes. However, the pathways of Mo uptake from soils and then delivery to the nodules have not been characterized in legumes. In this study, we characterized a high‐affinity Mo transporter (LjMOT1) from Lotus japonicus. Mo concentrations in an ethyl methanesulfonate–mutagenized line (ljmot1) decreased by 70–95% compared with wild‐type (WT). By comparing the DNA sequences of four AtMOT1 homologs between mutant and WT lines, one point mutation was found in LjMOT1, which altered Trp292 to a stop codon; no mutation was found in the other homologous genes. The phenotype of Mo concentrations in F2 progeny from ljmot1 and WT crosses were associated with genotypes of LjMOT1. Introduction of endogenous LjMOT1 to ljmot1 restored Mo accumulation to approximately 60–70% of the WT. Yeast expressing LjMOT1 exhibited high Mo uptake activity, and the Km was 182 nm . LjMOT1 was expressed mainly in roots, and its expression was not affected by Mo supply or rhizobium inoculation. Although Mo accumulation in the nodules of ljmot1 was significantly lower than that of WT, it was still high enough for normal nodulation and nitrogenase activity, even for cotyledons‐removed ljmot1 plants grown under low Mo conditions, in this case the plant growth was significantly inhibited by Mo deficiency. Our results suggest that LjMOT1 is an essential Mo transporter in L. japonicus for Mo uptake from the soil and growth, but is not for Mo delivery to the nodules.  相似文献   

11.
Functional characterization of Arabidopsis thaliana GAT1 in heterologous expression systems, i.e. Saccharomyces cerevisiae and Xenopus laevis oocytes, revealed that AtGAT1 (At1g08230) codes for an H(+)-driven, high affinity gamma-aminobutyric acid (GABA) transporter. In addition to GABA, other omega-aminofatty acids and butylamine are recognized. In contrast to the most closely related proteins of the proline transporter family, proline and glycine betaine are not transported by AtGAT1. AtGAT1 does not share sequence similarity with any of the non-plant GABA transporters described so far, and analyses of substrate selectivity and kinetic properties showed that AtGAT1-mediated transport is similar but distinct from that of mammalian, bacterial, and S. cerevisiae GABA transporters. Consistent with a role in GABA uptake into cells, transient expression of AtGAT1/green fluorescent protein fusion proteins in tobacco protoplasts revealed localization at the plasma membrane. In planta, AtGAT1 expression was highest in flowers and under conditions of elevated GABA concentrations such as wounding or senescence.  相似文献   

12.
Unlike mammals, birds have a ZZ male/ZW female sex-determining system. In most birds, the Z is large and gene rich, whereas the W is small and heterochromatic, but the ancient group of ratite birds are characterized by sex chromosomes that are virtually homomorphic. Any gene differentially present on the ratite Z and W is therefore a strong candidate for a sex-determining role. We have cloned part of the candidate bird sex-determining gene DMRT1 from the emu, a ratite bird, and have shown that it is expressed during the stages of development corresponding to gonadal differentiation in the chicken. The gene maps to the distal region of the Z short arm and is absent from the large W chromosome. Because most sequences on the emu W chromosome are shared with the Z, the Z-specific location constitutes strong evidence that differential dosage of DMRT1 is involved in sex determination in all birds. The sequence of emu DMRT1 has 88% homology with chicken DMRT1 and 65% with human DMRT1. Unexpectedly, an unexpressed 270-bp region in intron 3 of emu DMRT1 showed 90% homology with a sequence in the corresponding intron of human DMRT1. This extraordinarily high conservation across 300 million years of evolution suggests an important function, perhaps involved in control of DMRT1 expression and vertebrate sex determination.  相似文献   

13.
Unlike nitrate uptake of plant roots, less is known at the molecular level about how nitrate is distributed in various plant tissues. In the present study, characterization of the nitrate transporter, AtNRT1:4, revealed a special role of petiole in nitrate homeostasis. Electrophysiological studies using Xenopus oocytes showed that AtNRT1:4 was a low-affinity nitrate transporter. Whole-mount in situ hybridization and RT-PCR demonstrated that AtNRT1:4 was expressed in the leaf petiole. In the wild type, the leaf petiole had low nitrate reductase activity, but a high nitrate content, indicating that it is the storage site for nitrate, whereas, in the atnrt1:4 mutant, the petiole nitrate content was reduced to 50-64% of the wild-type level. Moreover, atnrt1:4 mutant leaves were wider than wild-type leaves. This study revealed a critical role of AtNRT1:4 in regulating leaf nitrate homeostasis, and the deficiency of AtNRT1:4 can alter leaf development.  相似文献   

14.
15.
16.
Phytochelatins (PCs), (gamma-Glu-Cys)n Gly polymers that were formerly considered to be restricted to plants and some fungal systems, are now known to play a critical role in heavy metal (notably Cd2+) detoxification in Caenorhabditis elegans. In view of the functional equivalence of the gene encoding C. elegans PC synthase 1, ce-pcs-1, to its homologs from plant and fungal sources, we have gone on to explore processes downstream of PC fabrication in this organism. Here we describe the identification of a half-molecule ATP-binding cassette transporter, CeHMT-1, from C. elegans with an equivalent topology to that of the putative PC transporter SpHMT-1 from Schizosaccharomyces pombe. At one level, CeHMT-1 satisfies the requirements of a Cd2+ tolerance factor involved in the sequestration and/or elimination of Cd x PC complexes. Heterologous expression of cehmt-1 in S. pombe alleviates the Cd2+-hypersensitivity of hmt- mutants concomitant with the localization of CeHMT-1 to the vacuolar membrane. Suppression of the expression of ce-hmt-1 in intact worms by RNA interference (RNAi) confers a Cd2+-hypersensitive phenotype similar to but more pronounced than that exhibited by ce-pcs-1 RNAi worms. At another level, it is evident from comparisons of the cell morphology of ce-hmt-1 and cepcs-1 single and double RNAi mutants that CeHMT-1 also contributes to Cd2+ tolerance in other ways. Whereas the intestinal epithelial cells of ce-pcs-1 RNAi worms undergo necrosis upon exposure to toxic levels of Cd2+, the corresponding cells of ce-hmt-1 RNAi worms instead elaborate punctate refractive inclusions within the vicinity of the nucleus. Moreover, a deficiency in CeHMT-1 does not interfere with the phenotype associated with CePCS-1 deficiency and vice versa. Double ce-hmt-1; ce-pcs-1 RNAi mutants exhibit both cell morphologies when exposed to Cd2+. These results and those from our previous investigations of the requirement for PC synthase for heavy metal tolerance in C. elegans demonstrate PC-dependent, HMT-1-mediated heavy metal detoxification not only in S. pombe but also in some invertebrates while at the same time indicating that the action of CeHMT-1 does not depend exclusively on PC synthesis.  相似文献   

17.
18.
19.
RNA polymerase II carboxyl-terminal domain (RNAPII CTD) phosphatases are responsible for the dephosphorylation of the C-terminal domain of the small subunit of RNAPII in eukaryotes. Recently, we demonstrated the identification of several interacting partners with human small CTD phosphatase1 (hSCP1) and the substrate specificity to delineate an appearance of the dephosphorylation catalyzed by SCP1. In this study, using the established cells for inducibly expressing hSCP1 proteins, we monitored the modification of β-O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is one of the most common post-translational modifications (PTMs). To gain insight into the PTM of hSCP1, we used the Western blot, immunoprecipitation, succinylayed wheat germ agglutininprecipitation, liquid chromatography-mass spectrometry analyses, and site-directed mutagenesis and identified the Ser41 residue of hSCP1 as the O-GlcNAc modification site. These results suggest that hSCP1 may be an O-GlcNAcylated protein in vivo, and its N-terminus may function a possible role in the PTM, providing a scaffold for binding the protein(s). [BMB Reports 2014; 47(10): 593-598]  相似文献   

20.
The gene for the Campylobacter ferric receptor (CfrA), a putative iron-siderophore transporter in the enteric food-borne pathogen Campylobacter jejuni, was cloned, and the membrane protein was expressed in Escherichia coli, affinity purified, and then reconstituted into model lipid membranes. Fourier transform infrared spectra recorded from the membrane-reconstituted CfrA are similar to spectra that have been recorded from other iron-siderophore transporters and are highly characteristic of a β-sheet protein (~44% β-sheet and ~10% α-helix). CfrA undergoes relatively extensive peptide hydrogen-deuterium exchange upon exposure to 2H2O and yet is resistant to thermal denaturation at temperatures up to 95°C. The secondary structure, relatively high aqueous solvent exposure, and high thermal stability are all consistent with a transmembrane β-barrel structure containing a plug domain. Sequence alignments indicate that CfrA contains many of the structural motifs conserved in other iron-siderophore transporters, including the Ton box, PGV, IRG, RP, and LIDG motifs of the plug domain. Surprisingly, a homology model reveals that regions of CfrA that are expected to play a role in enterobactin binding exhibit sequences that differ substantially from the sequences of the corresponding regions that play an essential role in binding/transport by the E. coli enterobactin transporter, FepA. The sequence variations suggest that there are differences in the mechanisms used by CfrA and FepA to interact with bacterial siderophores. It may be possible to exploit these structural differences to develop CfrA-specific therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号