首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A procedure described here allows the efficient and rapid purification of histidine-tagged measles virus haemagglutinin that is synthesized under the control of powerful promoters (PSFJ1-10 and PSFJ2-16) of the highly attenuated vaccinia virus (VV) strain LC16mO. A single affinity chromatography step purifies recombinant haemagglutinin proteins from the lysates of cells infected with the recombinant VVs. The recovery and purity are both very high (a yield of 0.5-2.8 mg/10(8) cells and purity of >94-98%), indicating that this procedure is approximately 400 times more efficient than the conventional methods used to prepare haemagglutinin. The haemagglutinins are correctly transported to the cell surface and have haemadsorption activity. Moreover, the recombinant haemagglutinin proteins cooperate with the measles virus fusion protein to elicit cell fusion activity. In addition, the antibody titres against measles virus, as measured by enzyme-linked immunosorbent assay using the purified haemagglutinin as the capture antigen, correlated closely with neutralization test titres (R(2) = 0.84, p < 0.05), indicating the preservation of immunologically relevant antigenicity. Such recombinant haemagglutinin preparations will be useful in diagnostic tests that measure functional anti-measles immunity and investigate the biological functions and structure of the haemagglutinin.  相似文献   

3.
Pre-implantation embryos were infected with the retroviral vector MMCV-neo, which carries the neomycin resistance (neo) gene and the v-myc gene. Three transgenic substrains (M-TKneo 1-3) were derived which stably transmit a single intact copy of the vector. In all of the substrains, expression of the neo gene from the internal thymidine kinase (TK) promoter was detected, with two of the substrains expressing the gene in all tissues analysed. In the third substrain, the vector had integrated on the X chromosome and neo expression varied between different tissues. A second series of transgenic mice were obtained with the retroviral vector SAX, in which the human adenosine deaminase cDNA (ADA) is under the control of an internal SV40 promoter. Four substrains (M-SAX 1-4) were analysed; however, no expression of the ADA cDNA was detected. In all mice, no expression was found of the genes under the control of the viral 5' long terminal repeats (LTRs). In the M-TKneo substrains the vector was hypomethylated irrespective of its expression whereas in the M-SAX mice the vector was hypermethylated. These results demonstrate for the first time that the TK promoter can apparently express a gene in all tissues of adult mice and that retroviral vectors with internal promoters may provide an alternative to DNA injection for the efficient expression of genes in transgenic mice.  相似文献   

4.

Background

A number of properties have relegated the use of Moloney murine leukemia virus (Mo‐MLV)‐based retrovirus vectors primarily to ex vivo protocols. Direct implantation of retrovirus producer cells can bypass some of the limitations, and in situ vector production may result in a large number of gene transfer events. However, the fibroblast nature of most retrovirus packaging cells does not provide for an effective distribution of vector producing foci in vivo, especially in the brain. Effective development of new retrovirus producer cells with enhanced biologic properties may require the testing of a large number of different cell types, and a quick and efficient method to generate them is needed.

Methods

Moloney murine leukemia virus (Mo‐MLV) gag‐pol and env genes and retrovirus vector sequences carrying lacZ were cloned into different minimal HSV/AAV hybrid amplicons. Helper virus‐free amplicon vectors were used to co‐infect glioma cells in culture. Titers and stability of retrovirus vector production were assessed.

Results

Simultaneous infection of two glioma lines, Gli‐36 (human) and J3T (dog), with both types of amplicon vectors, generated stable packaging populations that produced retrovirus titers of 0.5–1.2×105 and 3.1–7.1×103 tu/ml, respectively. Alternatively, when cells were first infected with retrovirus vectors followed by infection with HyRMOVAmpho amplicon vector, stable retrovirus packaging populations were obtained from Gli‐36 and J3T cells producing retrovirus titers comparable to those obtained with a traditional retrovirus packaging cell line, ΨCRIPlacZ.

Conclusions

This amplicon vector system should facilitate generation of new types of retrovirus producer cells. Conversion of cells with migratory or tumor/tissue homing properties could result in expansion of the spatial distribution or targeting capacity, respectively, of gene delivery by retrovirus vectors in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

5.
6.
7.
8.
The HindIII DNA fragments of vaccinia virus strain L-IVP were cloned in pBR322 bacterial plasmid. A hybrid plasmids collection of pVHn series contains all fragments of virus genome except terminal HindIII-B and HindIII-G, and also a large HindIII-A. The latter was cloned in cosmid pHC79. The obtained collection of hybrid DNA molecules allows to carry out a wide range of molecular biological experiments on the vaccinia virus genome.  相似文献   

9.
10.
11.
12.
13.
Background information. Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens. Results. We demonstrate that the VACV‐WR (VACV Western‐Reserve strain) displays no binding to Cer (ceramide) or to Gal‐Cer (galactosylceramide), but binds to a natural sulfated derivative of these molecules: the Sulf (sulfatide) 3′ sulfogalactosylceramide. The interaction between Sulf and VACV‐WR resulted in a time‐dependent inhibition of virus infection. Virus cell attachment was the crucial step inhibited by Sulf. Electron microscopy showed that SUVs (small unilamellar vesicles) enriched in Sulf bound to VACV particles. Both the A27 and L5 viral membrane proteins were shown to interact with Sulf, indicating that they could be the major viral ligands for Sulf. Soluble Sulf was successful in preventing mortality, but not morbidity, in a lethal mouse model infection with VACV‐WR. Conclusions. Together the results suggest that Sulf could play a role as an alternate receptor for VACV‐WR and probably other Orthopoxviruses.  相似文献   

14.
15.
16.
The ability of poxviruses to undergo intramolecular recombination within tandemly arranged homologous sequences can be used to generate chimeric genes and proteins. Genes containing regions of nucleotide homology will recombine to yield a single sequence composed of portions of both original genes. A recombinant virus containing two genes with a number of conserved regions will yield a population of recombinant viruses containing a spectrum of hybrid sequences derived by recombination between the original genes. This scheme has been used to generate hybrid human immunodeficiency virus type 1 env genes. Recombinant vaccinia viruses that contain two divergent env genes in tandem array have been constructed. In the absence of selective pressure to maintain both genes, recombination between conserved homologous regions in these genes generated a wide range of progeny, each of which expressed a novel variant polypeptide encoded by the newly created hybrid env gene. Poxvirus-mediated recombination may be applied to map type-specific epitopes, to create novel pharmaceuticals such as hybrid interferons, to study receptor-binding or enzyme substrate specificities, or to mimic the antigenic diversity found in numerous pathogens.  相似文献   

17.
表达尼帕病毒G囊膜糖蛋白重组牛痘病毒的研究   总被引:1,自引:0,他引:1  
采用牛痘病毒WR株,构建了表达哺乳动物密码子优化的NiV G蛋白基因的重组病毒rWR-NiV-G。Westernblot证实大小为66kDa的重组G蛋白在rWR-NiV-G感染的Hela细胞中获得表达;采用兔抗NiV高免血清间接免疫荧光检测重组痘病毒表达G蛋白显示出良好的特异免疫反应原性。rWR-NiV-G感染NiV敏感的BHK细胞系,并与NiV融合蛋白F共同表达,可形成强烈细胞融合现象。rWR-NiV-G感染免疫BALB/c小鼠,可诱导显著的NiV G蛋白特异体液免疫反应。以原核表达NiV G蛋白片段为包被抗原,间接ELISA检测rWR-NiV-G感染免疫小鼠血清中的G蛋白特异抗体,具有良好的敏感性和特异性。同时,rWR-NiV-G感染免疫小鼠血清中的G蛋白特异抗体可有效中和NiV囊膜蛋白F和G介导的伪型VSV重组病毒侵入NiV易感宿主细胞的感染性。结果表明,重组牛痘病毒表达的NiV G蛋白有良好的免疫原性和生物学活性功能,为进一步深入研究NiV G蛋白生物学功能、免疫原性及重组活载体疫苗研究奠定了重要基础。  相似文献   

18.
Vaccinia virus (VV) has been effectively utilized as a live vaccine against smallpox as well as a vector for vaccine development and immunotherapy. Increasingly there is a need for a new generation of highly attenuated and efficacious VV vaccines, especially in light of the AIDS pandemic and the threat of global bioterrorism. We therefore developed recombinant VV (rVV) vaccines that are significantly attenuated and yet elicit potent humoral and cell-mediated immune responses. B13R (SPI-2) and B22R (SPI-1) are two VV immunomodulating genes with sequence homology to serine protease inhibitors (serpins) that possess antiapoptotic and anti-inflammatory properties. We constructed and characterized rVVs that have the B13R or B22R gene insertionally inactivated (vDeltaB13R and vDeltaB22R) and coexpress the vesicular stomatitis virus glycoprotein (v50DeltaB13R and v50DeltaB22R). Virulence studies with immunocompromised BALB/cBy nude mice indicated that B13R or B22R gene deletion decreases viral replication and significantly extends time of survival. Viral pathogenesis studies in immunocompetent CB6F(1) mice further demonstrated that B13R or B22R gene inactivation diminishes VV virulence, as measured by decreased levels of weight loss and limited viral spread. Finally, rVVs with B13R and B22R deleted elicited potent humoral, T-helper, and cytotoxic T-cell immune responses, revealing that the observed attenuation did not reduce immunogenicity. Therefore, inactivation of immunomodulating genes such as B13R or B22R represents a general method for enhancing the safety of rVV vaccines while maintaining a high level of immunogenicity. Such rVVs could serve as effective vectors for vaccine development and immunotherapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号