首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hensel W 《Planta》1986,169(3):293-303
The development of the structural polarity of statocytes from cress roots (Lepidium sativum L.) was studied in a time- and stage-dependent manner. Outgrowing radicles had statocytes with abundant lipid droplets, sparsely developed endoplasmic reticulum (ER) and nuclei located at the proximal cell poles. During differentiation, coincidentally the lipid droplets disappeared, while rough ER increased in length. The ER was translocated into the distal cell pole to establish a complex of stacked ER. Microtubules occurred first at the distal cell edges. As a second step, ER was produced in the vicinity of the nucleus and was also translocated distally. By application of the antimicrotubular agents heavy water (90%), colchicine (10-4 mol·l-1) and triethyl lead chloride (20 mol·l-1), the involvement of microtubules in these events was studied. Triethyl lead chloride led to a complete cessation of differentiation; root-cap cells remained at a stage without polar arrangement of the ER. Colchicine affected the development of structural polarity slightly, as shown by a higher density of cortical ER cisternae. Heavy water inhibited the translocation of ER almost completely and yielded ER located also in the cell center. All anti-microtubular agents inhibited cell division and the differentiation of the distal cell layer of the dermatocalyptrogen into statocytes. It is hypothesized that microtubules serve as anchoring sites for microfilaments, which actually mediate the translocation of the ER. Hence, an intact system of microtubules and microfilaments is necessary for the expression of structural polarity.Abbreviations DC dermatocalyptrogen - ER endoplasmic reticulum - M meristem cell layer - MT microtubule - pI prospective story I - TrEl triethyl lead chloride  相似文献   

2.
The structural polarity of statocytes of Lepidium sativum L. is converted to a physical stratification by a root-tip-directed centrifugal acceleration. Sedimentation of amyloplasts and nucleus to the centrifugal (distal) cell pole and the lateral displacement of the distal endoplasmic reticulum (ER) complex occur after centrifugation for 20 min at an acceleration of 50 g. With higher doses (20 min, 100-2,000 g), smaller organelles become increasingly displaced. From the centrifugal to the centripetal cell pole, the following stratification is observed: 1) amyloplasts with mitochondria; 2) nucleus with mitochondria and a few dictyosomes, as well as laterally located ER; 3) dictyosomes with a few mitochondria; 4) vacuoles; and 5) lipid droplets. Within the first 7.5 min, after the roots have been returned to 1 g, the original arrangement of the amyloplasts sedimented on the underlying ER complex is reestablished in 66% of the statocytes. When roots previously centrifuged in an apical direction are exposed in a horizontal position to 1 g, the latent period of the graviresponse is increased by 7.5 min relative to the non-centrifuged controls. The kinetics of the response are identical to the controls. Roots centrifuged first in an apical direction and then for 2 h in a lateral direction (1,000 g) have statocytes with a physical stratification perpendicular to the root axis. A gravitropic curvature does not take place during the lateral centrifugation. These results support the hypothesis that the distal ER complex is necessary and sufficient for graviperception.  相似文献   

3.
In order to examine a possible role of calcium in graviperception, the calcium ionophore A23187 was used to elevate the concentration of free cytoplasmic calcium in statocytes of the roots of Lepidium sativum L. After a brief incubation (30 min) in a medium that contained 10 micromoles A23187 and 5.5 micromoles CaCl2, 50% of the roots bent gravitropically during a subsequent 2 h of horizontal exposure, with an angle of curvature that varied from 5 degrees to 70 degrees. The corresponding statocytes exhibited a polar arrangement of cell organelles as did the controls. However, in statocytes from 50% of the roots which were not curved after gravistimulation a portion of the distal endoplasmic reticulum (ER) complex was displaced in the direction of gravity within 30 min of horizontal exposure. After washing of the briefly treated roots for 24 h with 1% dimethylsulfoxide the percentage of gravitropically bending roots increased to approximately 80%, but the angle of curvature amounted to only 5 degrees-10 degrees. Longer treatment (2 h) with A23187 caused a complete loss of graviresponsiveness which was accompanied by disintegration of statocyte polarity. We concluded from these results that i) calcium is involved in graviperception and ii) gravisensitivity depends on the integrity of statocytes.  相似文献   

4.
Wendt M  Kuo-Huang LL  Sievers A 《Planta》1987,172(3):321-329
The polar arrangement of cell organelles in Lepidium root statocytes is persistently converted to a physical stratification during lateral centrifugation (the centrifugal force acts perpendicular to the root long axis) or by apically directed centrifugation combined with cytochalasin-treatment. Lateral centrifugation (10 min, 60 min at 10\g or 50\g) causes displacement of amylplasts to the centrifugal anticlinal cell wall and shifting of the endoplasmic reticulum (ER) complex to the centripetal distal cell edge. After 60 min of lateral centrifugation at 10\g or 50\g all roots show a clear gravitropic curvature. The average angle of curvature is about 40° and corresponds to that of roots stimulated gravitropically in the horizontal position at 1\g in spite of the fact that the gravistimulus is 10-or 50-fold higher. Apically directed centrifugation combined with cytochalasin B (25 g\ml-1) or cytochalasin D (2.5 g\ml-1) incubation yields statocytes with the amyloplasts sedimented close to the centrifugal periclinal cell wall and ER cisternae accumulated at the proximal cell pole. Gravitropic stimulation for 30 min in the horizontal position at 1\g and additional 3 h rotation on a clinostat result in gravicurvature of cytochalasin B-treated centrifuged (1 h at 50\g) roots, but because of retarded root growth the angle of curvature is lower than in control roots. Cytochalasin D-treatment during centrifugation (20 min at 50\g) does not affect either root growth or gravicurvature during 3 h horizontal exposure to 1\g relative to untreated roots. As lateral centrifugation enables only short-term contact between the amyloplasts and the distal ER complex at the onset of centrifugation and apically directed centrifugation combined with cytochalasin-treatment even exclude any contact the integrity of the distal cell pole need not necessarily be a prerequisite for graviperception in Lepidium root statocytes.Abbreviations CB cytochalasin B - CD cytochalasin D - ER endoplasmic reticulum - g gravitational acceleration  相似文献   

5.
Abstract The structural polarity of statocytes from cress roots is changed by centrifugation. Upon low- dose centrifugation (3000 g min), the extent of stratification depends on statocyte position, i.e., central statocytes are affected more than lateral ones. Upon higher doses of centrifugation (60,000 and 360,000 g min), a uniform density gradient is established in all statocytes. If, after centrifugation, the roots are exposed to gravity again, the endoplasmic reticulum (ER) cisternae are relocated parallel to the periclinal cell walls within a few minutes; this relocation is independent of the direction of gravity in relation to the root axis, and independent of the previously applied centrifugation dose. This supports the notion that polarity is determined genetically. Cytochalasin B treatment, before and during centrifugation, totally inhibits the relocation of ER. After removing the drug by rinsing the roots, the statocytes restore cell polarity and relocate ER. These results indicate that relocation of ER cisternae may be mediated by microfilaments. When centrifuged roots are exposed to 1 g in the horizontal position, the latent period of gravitropism increases by 8–10 min relative to controls, regardless of the previously applied centrifugation doses. The kinetics of curvature are virtually identical. Since the increase in the latent period coincides with the time needed for most statocytes to restore the distal cell pole, it is evident that perception of gravity is correlated to the integrity of the distal cell pole.  相似文献   

6.
The pea mutant (Pisum sativum ageotropum) and the normal pea (P. sativum cv. Sabel) were compared in order to see if there were any differences in root anatomy or submorphology which could explain the presumed ageotropic behaviour of the mutant. In both types the root cap consists of a central core (columella) distinct from the peripheral part. The core contains five to six rows of columella cells, each consisting of 10 to 16 storeys of statocytes. The ultrastructure of the columella cells in the two types is very similar; the main difference is confined to the distribution of rough endoplasmic reticulum (ER), which in the mutant statocytes is evenly distributed throughout the cell, while in the normal pea statocytes it is mainly concentrated in the distal part at the “floor” of the cell. Using light micrographs, the movement of amyloplasts and nuclei have been followed in detail during a 40 min inversion period. The pattern of movement of the amyloplasts is apparently identical in the two types and the distances moved during the inversion period are 39 μm and 44 μm in the normal and mutant statocytes, respectively. The nucleus has not been observed to move in normal pea; a slight rearrangement of the nucleus position can be observed during the period 30 to 40 min after the start of inversion of the mutant. Based on magnified electron micrographs of the statocytes a morphometrical analysis was made of five cell structures – amyloplasts, nuclei, mitochondria, vacuoles and ER – which appeared to be freely movable or redistributable under the influence of the gravitational force.  相似文献   

7.
The root anatomy and ultrastructure of the agravitropic Arabidopsis thaliana L. mutants Dwf and aux-1 were compared with the gravitropic mutant aux-2 and the wild type (WT) in an attempt to find an explanation for the lack of response to gravity. No differences were found in the organization of the root cap. The central part of the cap (columella) contains 5 storeys of developing, functioning and degenerating statocytes. Their ultrastructure is very similar in all four types of plant. Particular attention was paid to the distribution of rough endoplasmie reticulum (ER). Both in the WT and the mutants the ER is concentrated in the distal part at the "floor" of the cell.
Light micrographs were used to compare the sedimentation rates of movable cell structures in normal and agravitropic root statocytes. A longitudinal movement of amyloplasts and nuclei was observed when the roots were inverted. In WT and aux-2 the rates were on average 6.3 μm h−1 (amyloplasts) and 2.1 μm h−1 (nucleus). In aux-1 the sedimentation rates were significantly lower: 2.4 and 0.6 μm h−1, respectively. Based on magnified electron micrographs of normal and inverted statocytes a morphometrical analysis of the distribution and redistribution of amyloplasts, nuclei, mitochondria, vacuoles and ER was made. The only significant difference was found in the redistribution of amyloplasts between aux-1 and the gravitropical normal types.  相似文献   

8.
Hensel W 《Protoplasma》1985,129(2-3):178-187
Summary The effect of cytochalasin B (CB; 25 ·ml–1 in 1% dimethylsulfoxide, DMSO) upon the structural polarity of statocytes in cress roots is demonstrated. If normal, vertically grown roots are incubated in CB, the structural polarity of the statocytes is altered according to the developmental stage of the root. Statocytes from young roots (13 or 17 hours, additionally 7 hours CB) are characterized by proximal ER cisternae and a sparsely developed distal ER-complex. Statocytes from older roots (24 hours, additionally 7 hours CB) still accumulate distal ER, as in control roots, but at the proximal cell pole in the vicinity of the nucleus additional ER is found. These effects are reversed by washing out the drug in DMSO. Growth of the roots under a continuous supply of CB yields statocytes with sedimented nuclei, proximal ER and almost no distal ER. Together with quantitative data from morphometric studies, a dynamic model of the expression of inherent cell polarity in structural polarity is proposed.Abbreviations CB cytochalasin B - DMSO dimethylsulfoxide - ER endoplasmic reticulum Preliminary results were presented at the joint Annual Meeting of the Belgian and German Society for Cell Biology, Bonn, 18–22 March 1985; Eur. J. Cell Biol. 36 (Suppl. 7), 1985, 25.Dedicated to Professor Dr. A.Betz on the occasion of his 65th birthday.  相似文献   

9.
Hensel W  Sievers A 《Planta》1980,150(4):338-346
Statocytes of vertically growing roots of Lepidium sativum L. exhibit a strict polarity: The nucleus is positioned near the proximal periclinal cell wall, amyloplasts are sedimented on a complex of rough endoplasmic reticulum (ER) consisting of parallel cisternae near the distal periclinal cell wall.When 24 h old, vertically grown roots are rotated for an additional 20 h on a horizontal clinostat, this polarity is destroyed. Furthermore, the prolonged omnilateral stimulation leads to a damage of the statocytes, which in some cases ends in the self-destruction of the sensitive cells. The different components of the ultrastructural respones of the statocytes are: Displacement of the nucleus; changes in amount and distribution of the ER; loss of amyloplast starch; confluence of lipid droplets to large aggregates: a considerable increase of the lytic compartment. In addition, even anticlinal cell walls may be lysed up to small stumps. As all these effects are clearly restricted to the statocytes, only these cells are able to respond to the continuously changing direction of the gravity vector, thus perceiving gravity as such.After being exposed horizontally, the graviresponse of rotated roots is delayed as compared to the controls. About 20% of the rotated roots do not respond (curve) at all, but grow perpendicular in relation to the gravity vector. Perception of gravity is inevitably correlated with the polarity and the integrity of the statocytes.Abbreviation ER endoplasmic reticulum A preliminary report was presented at the Fall Meeting of the German Society for Cell Biology in Salzburg, Austria, September 1979 (Hensel and Sievers 1979)This paper represents part of a dissertation (D 5) of W. H.  相似文献   

10.
Wolfgang Hensel 《Planta》1989,177(3):296-303
Tissue slices of living root caps of cress (Lepidium sativum L.), two to three cell layers in thickness, were prepared by a microsurgical procedure. The viability, cellular structures and cytoplasmic movement of the cells were examined in the light microscope. Nuclei, amyloplasts, vacuoles and endoplasmic reticulum were identified and their positions confirmed after fixation and observation of the same cells in the electron microscope. The distribution of microtubules was shown by immunocytochemistry. During germination, microtubules appear first at the distal edges of the statocytes, while in mature statocytes a distal domain of criss-crossed microtubules could be distinguished from a proximal domain with transversally oriented microtubules. Microfilaments in young statocytes form a nuclear enclosure; in mature statocytes bundles of microfilaments fan out into the cell cortex. The transition from statocytes to secretion cells is accompanied by a more pronounced cortical network of microfilaments, while the nucleus-associated microfilaments remain visible. It is suggested that these microfilaments play a role in the positioning of the nucleus and the translocation of endoplasmic reticulum.Abbreviations ER endoplasmic reticulum - MF microfilament - MT microtubule  相似文献   

11.
Busch MB  Sievers A 《Planta》1990,181(3):358-364
Treatment of cress (Lepidium sativum L.) roots with phytohormones (4.3 x 10(-5) M gibberellic acid plus 4.3 x 10(-5) M kinetin, 30 h; T.H. Iversen, 1969, Physiol. Plant. 22, 1251-1262) caused not only complete destarching of amyloplasts but also destruction of the polar arrangement of cell organelles in statocytes. The nucleus was not positioned exclusively near the proximal cell pole as in the controls but was also found near the distal cell pole. The endoplasmic reticulum (ER) was no longer organized in parallel sheets at the distal cell pole but instead the ER-cisternae were randomly distributed. Additionally, the statocytes from hormone-treated roots contained a large central vacuole instead of numerous small ones as in the controls. The starch-free plastids had a reduced volume and an amoeboid shape. They did not sediment but were randomly distributed in the statocytes. The loss of structural polarity was accompanied by loss of graviresponsiveness although root growth still occurred. Twenty-two hours after removal of the hormones, structural polarity was restored and starch was resynthesized. The newly formed starch grains were smaller and more numerous per amyloplast compared to the controls. It is concluded that loss of gravisensitivity of roots after hormone treatment cannot be solely attributed to the loss of amyloplastic starch because there is a concomitant loss in the polar organisation of the statocyte.  相似文献   

12.
Since gravistimulation is followed by alterations in the external current symmetry (Behrens et al., 1982), the effect of gravistimulation on cellular membrane potential was investigated using conventional glass microelectrode techniques. The resting potential of statocytes in a vertically oriented root is approx. -118 mV. Upon gravistimulation, the membrane potential is temporarily depolarized (lag time = 2 s) to a potential of approx. -93 mV. This depolarization is only observed in statocytes located on the physically lower root flank while those on the corresponding upper flank become weakly hyperpolarized (approx. -13 mV). These results reflect altered ion fluxes across the plasma membrane. The perception of gravistimulus was suggested to result from a pressure of the amyloplasts on the distal endoplasmic reticulum (ER) of the statocytes (Sievers and Volkmann, 1972). A causal relationship between changes in ER-amyloplast interactions and the rapid alterations in plasma membrane potential described above is not known. A candidate for such an intracellular messenger is Ca2+. As a first step in establishing the validity of such an assumption, we have isolated ER membranes from roots. When incubated with micromolar concentrations of Ca2+, the vesicular membrane fraction accumulates Ca2+. The accumulation is ATP-dependent and -specific and is directly coupled to ATP hydrolysis since a protonophore shows no inhibitory effect. Thus, in analogy to the sarcoplasmic reticulum of muscle, regulation of an ER-localized Ca2+ compartment might be an important step in such complex processes as stimulus-transduction in gravitropism.  相似文献   

13.
Hensel W 《Planta》1984,162(5):404-414
When roots of Lepidium sativum L. are immersed in a colchicine solution (10-4 mol l-1), the cortical microtubules of statocytes are affected such that the dense network ofmicrotubules at the distal cell edges, between the endoplasmic reticulum and the plasma membrane, disappears almost completely, whereas the microtubules, lining the anticlinal cell walls are reduced only to a limited extent. Upon inversion of colchicine-pretreated roots, the distal complex of endoplasmic reticulum sinks into the interior of the statocyte. Germination of seeds in the cold (3–4°C) leads to a retardation of statocyte development; the elaborated system of endoplasmic reticulum is lacking, and only a few microtubules are observable, lining the plasma membrane along the anticlinal cell walls. During an additional 4 h at 24°C, groups of microtubules develop near the plasma membrane in the distal one-third of the statocytes, coaligning with newly synthesized cisternae of the endoplasmic reticulum. It is proposed that, particularly at the distal statocyte pole, microtubules in coordination with cross-bridging structures, act in stabilizing the polar arrangement of the distal endoplasmic reticulum and, in turn, facilitate an integrated function of amyloplasts, endoplasmic reticulum and plasma membrane in graviperception.Abbreviations ER endoplasmic reticulum - MT microtubule  相似文献   

14.
The chemotherapeutic agent, bleomycin, forms a 1:1complex with both Fe(III) and Fe(II). The rate offerric ion transfer from bleomycin toapotransferrin is rather slow. However, when ascorbate was added toFe(III)-bleomycin priorto exposure to apotransferrin, the transfer rate was markedly increased. Ascorbatereadilyreduces Fe(III)-bleomycin to Fe(II)-bleomycin. A second order rate constant of 2.4 mM min wasestimated for this reaction. Fe(II)-bleomycinimmediately combines with O 2 , generating the so-called'acti-vatedbleomycin' complex. The data suggest that a reduced form of iron-bleomycin more readilydonatesits iron ion to apotransferrin. Reoxidation of ferrous ions, andFe(III)-transferrin formation occur rapidly.  相似文献   

15.
Chemical cross-linking and gel permeation chromatography were used to examine early events in the biogenesis of class I histocompatibility molecules. We show that newly synthesized class I heavy chains associate rapidly and quantitatively with an 88-kD protein in three murine tumor cell lines. This protein (p88) does not appear to possess Asn-linked glycans and it is not the abundant ER protein, GRP94. The class I-p88 complex exists transiently (t1/2 = 20-45 min depending on the specific class I heavy chain) and several lines of evidence suggest that p88 dissociates from the complex while still in the ER. Dissociation is not triggered upon binding of beta 2-microglobulin to the heavy chain (t1/2 = 2-5 min). However, the rate of dissociation does correlate with the characteristic rate of ER to Golgi transport for the particular class I molecule studied. Consequently, dissociation of p88 may be rate limiting for ER to Golgi transport. Class I molecules bind antigenic peptides, apparently in the ER, for subsequent presentation to cytotoxic T lymphocytes at the cell surface. p88 could promote peptide binding or it may retain class I molecules in the ER during formation of the ternary complex of heavy chain, beta 2-microglobulin, and peptide.  相似文献   

16.
S T Lim  C K Jue  C W Moore    P N Lipke 《Journal of bacteriology》1995,177(12):3534-3539
Bleomycin mediates cell wall damage in the yeast Saccharomyces cerevisiae. Bleomycin treatments in the presence of Fe(II) increased the rate of spheroplast formation by lytic enzymes by 5- to 40-fold. Neither Fe(III) nor other tested ions caused significant cell wall damage in the presence of bleomycin. The effect of bleomycin-Fe(II) on the cell wall mimicked the characteristics of bleomycin-Fe(II)-mediated DNA damage in dependence on aeration, inhibition by ascorbate, and potentiation by submillimolar concentrations of sodium phosphate. Bleomycin-mediated cell wall damage was time and dose dependent, with incubations as short as 20 min and drug concentrations as low as 3.3 x 10(-7)M causing measurable cell wall damage in strain CM1069-40. These times and concentrations are within the range of effectiveness for bleomycin-mediated DNA damage and for the cytotoxicity of the drug. Although Fe(III) was inactive with bleomycin and O2, the bleomycin-Fe(III) complex damaged walls and lysed cells in the presence of H2O2. H2O2 causes similar activation of bleomycin-Fe(III) in assays of DNA scission. These results suggest that an activated bleomycin-Fe-O2 complex disrupts essential cell wall polymers in a manner analogous to bleomycin-mediated cleavage of DNA.  相似文献   

17.
YddV from Escherichia coli (Ec) is a novel globin-coupled heme-based oxygen sensor protein displaying diguanylate cyclase activity in response to oxygen availability. In this study, we quantified the turnover numbers of the active [Fe(III), 0.066 min(-1); Fe(II)-O(2) and Fe(II)-CO, 0.022 min(-1)] [Fe(III), Fe(III)-protoporphyrin IX complex; Fe(II), Fe(II)-protoporphyrin IX complex] and inactive forms [Fe(II) and Fe(II)-NO, <0.01 min(-1)] of YddV for the first time. Our data indicate that the YddV reaction is the rate-determining step for two consecutive reactions coupled with phosphodiesterase Ec DOS activity on cyclic di-GMP (c-di-GMP) [turnover number of Ec DOS-Fe(II)-O(2), 61 min(-1)]. Thus, O(2) binding and the heme redox switch of YddV appear to be critical factors in the regulation of c-di-GMP homeostasis. The redox potential and autoxidation rate of heme of the isolated heme domain of YddV (YddV-heme) were determined to be -17 mV versus the standard hydrogen electrode and 0.0076 min(-1), respectively. The Fe(II) complexes of Y43A and Y43L mutant proteins (residues at the heme distal side of the isolated heme-bound globin domain of YddV) exhibited very low O(2) affinities, and thus, their Fe(II)-O(2) complexes were not detected on the spectra. The O(2) dissociation rate constant of the Y43W protein was >150 s(-1), which is significantly larger than that of the wild-type protein (22 s(-1)). The autoxidation rate constants of the Y43F and Y43W mutant proteins were 0.069 and 0.12 min(-1), respectively, which are also markedly higher than that of the wild-type protein. The resonance Raman frequencies representing ν(Fe-O(2)) (559 cm(-1)) of the Fe(II)-O(2) complex and ν(Fe-CO) (505 cm(-1)) of the Fe(II)-CO complex of Y43F differed from those (ν(Fe-O(2)), 565 cm(-1); ν(Fe-CO), 495 cm(-1)) of the wild-type protein, suggesting that Tyr43 forms hydrogen bonds with both O(2) and CO molecules. On the basis of the results, we suggest that Tyr43 located at the heme distal side is important for the O(2) recognition and stability of the Fe(II)-O(2) complex, because the hydroxyl group of the residue appears to interact electrostatically with the O(2) molecule bound to the Fe(II) complex in YddV. Our findings clearly support a role of Tyr in oxygen sensing, and thus modulation of overall conversion from GTP to pGpG via c-di-GMP catalyzed by YddV and Ec DOS, which may be applicable to other globin-coupled oxygen sensor enzymes.  相似文献   

18.
A morphometric analysis of root statocytes was performed on seedlings of lentil ( Lens culinaris L., cv. Verte du Puy) in order to determine the effects of microgravity on the polarity of these cells. Seedlings were grown: (1) on the ground, (2) in microgravity, (3) on a 1 g centrifuge in space, (4) first in microgravity and then placed on a 1 g centrifuge for 3 h. Dry seeds were hydrated in space (except for the ground control) for 25 h in darkness at 22°C in the Biorack facility developed by the European Space Agency. At the end of the experiment, the seedlings were photographed and fixed in glutaraldehyde in the Biorack glove box. The average shape of the statocytes and the location of endoplasmic reticulum, amyloplasts and nucleus in the cells were analysed in the four samples. By considering the cell shape, it appears that the morphology of the statocytes on the ground was different from that observed in the space samples. Cell polarity was similar in microgravity and in the centrifuged samples except for the distribution of the amyloplasts. These organelles were not distributed at random in near zero gravity, and they were more numerous in the proximal than in the distal half. Moreover, the statoliths were more voluminous in microgravity than in the centrifuged samples. The nucleus was closer to the cell center in the statocytes of roots grown in microgravity than in statocytes of roots grown in microgravity and then placed on the 1 g centrifuge for 3 h. It is hypothesized that the nucleus is attached to the cell periphery and that its location is dependent upon gravity.  相似文献   

19.
Kuya N  Kato M  Sato Y  Kaneta T  Sato S 《Protoplasma》2006,229(1):83-91
Summary. The cellular structures of statocytes implicated in gravisensing in primary and lateral roots of Vigna angularis were compared. The statocytes of lateral roots already had small amyloplasts immediately after they emerged from the primary root. Although these amyloplasts sedimented, the lateral roots showed much weaker gravitropism than primary roots, at least until they reached a length of about 30 mm. The nuclei were usually positioned in the upper end of the statocytes in both types of roots. Electron microscopic surveys showed that many tubular elements of endoplasmic reticulum (ER) were frequently localized in the lower end of the statocyte and they sometimes diverged or curved, suggesting that the ER forms a large reticulate complex. It is worth noting that statocytes with a large ER complex were found much more frequently in primary roots than in lateral roots. The amyloplasts were not always settled on this complex but were very frequently under it, especially in the primary roots. In lateral roots, they were usually localized under the ER complex when they were present. Thus, it is suggested that the differential development and organization of the amyloplast-ER complex system is involved in the differential gravitropism of the two types of roots. Correspondence and reprints: Department of Biology, Faculty of Science, Ehime University, Bunkyo-cho, Matsuyama 790-8577, Japan.  相似文献   

20.
The herpes simplex virus type 1 (HSV-1) origin of replication, oriS, contains three highly homologous sequences, sites I, II, and III. The HSV-1 origin-binding protein (OBP), the product of the UL9 gene, has been shown to bind specifically to sites I and II. In this study, gel shift analysis was used to characterize interactions between site I DNA and proteins in infected and uninfected cell extracts. The formation of two protein-DNA complexes, bands A and B, was demonstrated with infected cell extracts, and one predominant protein-DNA complex, band M, was identified with mock-infected extracts. Protein interactions with the highly homologous site II and III DNAs were also characterized. Incubation of infected cell extracts with the lower-affinity site II DNA as a probe resulted in the appearance of two protein-DNA complexes with mobilities identical to those of the A and B complexes, while incubation with site III DNA resulted in the formation of a single complex with the mobility of band B; no A-like band was observed. Incubation of high concentrations of partially purified OBP with site I DNA resulted in the formation of two novel complexes, bands 9-1 and 9-2. Addition of uninfected or HSV-1-infected cell extracts to the purified OBP-site I DNA mix significantly enhanced the formation of complex 9-1. The enhanced formation of complex 9-1 by uninfected cell extracts implicates a cellular factor or factors in the formation or stabilization of the OBP-site I DNA complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号