首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To obtain site-specific information about individual EF-hand motifs, the EF-hand Ca(2+)-binding loops from site III and site IV of calmodulin (CaM) were inserted separately into a non-Ca(2+)-binding cell adhesion protein, domain 1 of CD2 (denoted as CaM-CD2-III-5G-52 and CaM-CD2-IV-5G-52). Structural analyses using various spectroscopic methods have shown that the host protein CD2 retains its native structure after the insertion of the 12-residue loops. The Tb(3+) fluorescence enhancement upon formation of a Tb(3+)-protein complex and the direct competition by La(3+) and Ca(2+) suggest that native Ca(2+)-binding pockets are formed in both engineered proteins. Moreover, as revealed by NMR, both Ca(2+) and La(3+) specifically interact with the residues at the grafted EF-loop. The CaM-CD2-III-5G-52 has stronger affinities to Ca(2+), Tb(3+) and La(3+) than CaM-CD2-IV-5G-52, indicating differential intrinsic metal-binding affinities of the EF-loops.  相似文献   

2.
L-type (alpha(1C)) calcium channels inactivate rapidly in response to localized elevation of intracellular Ca(2+), providing negative Ca(2+) feedback in a diverse array of biological contexts. The dominant Ca(2+) sensor for such Ca(2+)-dependent inactivation has recently been identified as calmodulin, which appears to be constitutively tethered to the channel complex. This Ca(2+) sensor induces channel inactivation by Ca(2+)-dependent CaM binding to an IQ-like motif situated on the carboxyl tail of alpha(1C). Apart from the IQ region, another crucial site for Ca(2+) inactivation appears to be a consensus Ca(2+)-binding, EF-hand motif, located approximately 100 amino acids upstream on the carboxyl terminus. However, the importance of this EF-hand motif for channel inactivation has become controversial since the original report from our lab implicating a critical role for this domain. Here, we demonstrate not only that the consensus EF hand is essential for Ca(2+) inactivation, but that a four-amino acid cluster (VVTL) within the F helix of the EF-hand motif is itself essential for Ca(2+) inactivation. Mutating these amino acids to their counterparts in non-inactivating alpha(1E) calcium channels (MYEM) almost completely ablates Ca(2+) inactivation. In fact, only a single amino acid change of the second valine within this cluster to tyrosine (V1548Y) supports much of the functional knockout. However, mutations of presumed Ca(2+)-coordinating residues in the consensus EF hand reduce Ca(2+) inactivation by only approximately 2-fold, fitting poorly with the EF hand serving as a contributory inactivation Ca(2+) sensor, in which Ca(2+) binds according to a classic mechanism. We therefore suggest that while CaM serves as Ca(2+) sensor for inactivation, the EF-hand motif of alpha(1C) may support the transduction of Ca(2+)-CaM binding into channel inactivation. The proposed transduction role for the consensus EF hand is compatible with the detailed Ca(2+)-inactivation properties of wild-type and mutant V1548Y channels, as gauged by a novel inactivation model incorporating multivalent Ca(2+) binding of CaM.  相似文献   

3.
To investigate the metal-binding properties of KChIP1, the interaction of KChIP1 and mutated KChIP1 with divalent cations (Mg(2+), Ca(2+), Sr(2+), and Ba(2+)) was explored by 8-anilinonaphthalene-1-sulfonate (ANS) fluorescence. It showed that KChIP1 possessed two types of Ca(2+)-binding sites, high-affinity and low-affinity Ca(2+)-binding sites. However, only low-affinity-binding site for Mg(2+), Sr(2+), and Ba(2+) was observed. The metal-binding properties of KChIP1 are not appreciably affected after removal of the N-terminal portion and EF-hand 1. Deleting the EF-hand 4 of KChIP1 abolishes its high-affinity Ca(2+)-binding site, but retains the intact low-affinity-binding site for metal ions. A decrease in the nonpolarity of ANS-binding site occurs with all mutants. However, the binding of ANS with KChIP1 is no longer observed after removal of EF-hands 3 and 4. Intermolecular interaction assessed by chemical cross-linking suggested that KChIP1 had a propensity to form dimer in the absence of metal ions, and a KChIP1 tetramer was pronouncedly produced in the presence of metal ions. Noticeably, the oligomerization state depends on the integrity of EF-hand 4. Taken together, our data suggest that EF-hand 4 is of structural importance as well as functional importance for fulfilling the physiological function of KChIP1.  相似文献   

4.
Assembly of the cellulosome, a large, extracellular cellulase complex, depends upon docking of a myriad of enzymatic subunits to homologous receptors, or cohesin domains, arranged in tandem along a noncatalytic scaffolding protein. Docking to the cohesin domains is mediated by a highly conserved domain, dockerin (DS), borne by each enzymatic subunit. DS consists of two 22-amino-acid duplicated sequences, each bearing homology to the EF-hand calcium-binding loop. To compare the DS structure with that of the EF-hand helix-loop-helix motif, we analyzed the solution secondary structure of the DS from the cellobiohydrolase CelS subunit of the Clostridium thermocellum cellulosome using multidimensional heteronuclear NMR spectroscopy. The effect of Ca(2+)-binding on the DS structure was first investigated by using 2D (15)N-(1)H HSQC NMR spectroscopy. Changes in the spectra during Ca(2+) titration revealed that Ca(2+) induces folding of DS into its tertiary structure. This Ca(2+)-induced protein folding distinguishes DS from typical EF-hand-containing proteins. Sequential backbone assignments were determined for 63 of 69 residues. Analysis of the NOE connectivities and H(alpha) chemical shifts revealed that each half of the dockerin contains just one alpha-helix, comparable to the F-helix of the EF-hand motif. Thus, the structure of the DS Ca(2+)-binding subdomain deviates from that of the canonical EF-hand motif.  相似文献   

5.
Y Wei  V Marchi  R Wang  R Rao 《Biochemistry》1999,38(44):14534-14541
Pmr1, a novel member of the family of P-type ATPases, localizes to the Golgi compartment in yeast where it provides Ca(2+) and Mn(2+) for a variety of normal secretory processes. We have previously characterized Ca(2+) transport in isolated Golgi vesicles, and described an expression system for the analysis of Pmr1 mutants in a yeast strain devoid of background Ca(2+) pump activity [Sorin, A., Rosas, G., and Rao, R. (1997) J. Biol. Chem. 272, 9895-9901]. Here we show, using recombinant bacterial fusions, that an N-terminal EF hand-like motif in Pmr1 binds Ca(2+). Increasing disruptions of this motif led to progressive loss of pump function; thus, the single point mutations D51A and D53A retained pump activity but with drastic reductions in the affinity for Ca(2+) transport, while the double mutant was largely unable to exit the endoplasmic reticulum. In-frame deletions of the Ca(2+)-binding motif resulted in complete loss of function. Interestingly, the single point mutations conferred differential affinities for transport of Ca(2+) and Mn(2+) ions. Further, the proteolytic stability of the catalytic ATP-binding domain is altered by the N-terminal mutations, suggesting an interaction between these two regions of polypeptide. These studies implicate the N-terminal domain of Pmr1 in the modulation of ion transport, and may help elucidate the role of N-terminal metal-binding sites of Cu(2+)-ATPases, defective in Wilson and Menkes disease.  相似文献   

6.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

7.
The protease domain within the RUBV (rubella virus) NS (non-structural) replicase proteins functions in the self-cleavage of the polyprotein precursor into the two mature proteins which form the replication complex. This domain has previously been shown to require both zinc and calcium ions for optimal activity. In the present study we carried out metal-binding and conformational experiments on a purified cysteine-rich minidomain of the RUBV NS protease containing the putative Zn(2+)-binding ligands. This minidomain bound to Zn(2+) with a stoichiometry of approximately 0.7 and an apparent dissociation constant of <500 nM. Fluorescence quenching and 8-anilinonaphthalene-1-sulfonic acid fluorescence methods revealed that Zn(2+) binding resulted in conformational changes characterized by shielding of hydrophobic regions from the solvent. Mutational analyses using the minidomain identified residues Cys(1175), Cys(1178), Cys(1225) and Cys(1227) were required for the binding of Zn(2+). Corresponding mutational analyses using a RUBV replicon confirmed that these residues were necessary for both proteolytic activity of the NS protease and viability. The present study demonstrates that the CXXC(X)(48)CXC Zn(2+)-binding motif in the RUBV NS protease is critical for maintaining the structural integrity of the protease domain and essential for proteolysis and virus replication.  相似文献   

8.
The rubella virus (RUB) nonstructural (NS) protease is a papain-like cysteine protease (PCP) located in the NS-protein open reading frame (NSP-ORF) that cleaves the NSP-ORF translation product at a single site to produce two products, P150 (the N-terminal product) and P90 (the C-terminal product). The RUB NS protease was found not to function following translation in vitro in a standard rabbit reticulocyte lysate system, although all of the other viral PCPs do so. However, in the presence of divalent cations such as Zn2+, Cd2+, and Co2+, the RUB NS protease functioned efficiently, indicating that these cations are required either as direct cofactors in catalytic activity or for correct acquisition of three-dimensional conformation of the protease. Since other viral and cell PCPs do not require cations for activity and the RUB NS protease contains a putative zinc binding motif, the latter possibility is more likely. Previous in vivo expression studies of the RUB NS protease failed to demonstrate trans cleavage activity (J.-P. Chen et al., J. Virol. 70:4707–4713, 1996). To study whether trans cleavage could be detected in vitro, a protease catalytic site mutant and a mutant in which the C-terminal 31 amino acids of P90 were deleted were independently introduced into plasmid constructs that express the complete NSP-ORF. Cotranslation of these mutants in vitro yielded both the native and the mutated forms of P90, indicating that the protease present in the mutated construct cleaved the catalytic-site mutant precursor. Thus, RUB NS protease can function in trans.  相似文献   

9.
10.
The structure and function of cytosolic Ca(2+)-binding proteins containing EF-hands are well understood. Recently, the presence of EF-hands in an extracellular protein was for the first time proven by the structure determination of the EC domain of BM-40 (SPARC (for secreted protein acidic and rich in cysteine)/osteonectin) (Hohenester, E., Maurer, P., Hohenadl, C., Timpl, R., Jansonius, J. N., and Engel, J. (1996) Nat. Struct. Biol. 3, 67-73). The structure revealed a pair of EF-hands with two bound Ca(2+) ions. Two unusual features were noted that distinguish the extracellular EF-hands of BM-40 from their cytosolic counterparts. An insertion of one amino acid into the loop of the first EF-hand causes a variant Ca(2+) coordination, and a disulfide bond connects the helices of the second EF-hand. Here we show that the extracellular EF-hands in the BM-40 EC domain bind Ca(2+) cooperatively and with high affinity. The EC domain is thus in the Ca(2+)-saturated form in the extracellular matrix, and the EF-hands play a structural rather than a regulatory role. Deletion mutants demonstrate a strong interaction between the EC domain and the neighboring FS domain, which contributes about 10 kJ/mol to the free energy of binding and influences cooperativity. This interaction is mainly between the FS domain and the variant EF-hand 1. Certain mutations of Ca(2+)-coordinating residues changed affinity and cooperativity, but others inhibited folding and secretion of the EC domain in a mammalian cell line. This points to a function of EF-hands in extracellular proteins during biosynthesis and processing in the endoplasmic reticulum or Golgi apparatus.  相似文献   

11.
Calcyphosine is a calcium-binding protein containing four EF-hand domains, initially identified as thyroid protein p24. It was first cloned and its counterparts in rabbit, human, and mouse, crayfish and lobster of invertebrate were also cloned. Here we describe the cloning and characterization of a novel human calcyphosine gene. The 3829-bp cDNA encodes a EF-hand Ca(2+)-binding protein homologous to the dog calcyphosine. It also contains two EF-hand Ca(2+)-binding motif. It is abundantly expressed in many tissues including by RT-PCR analysis and believed to play important role in calcium signaling. It was mapped to human genome 12q15.  相似文献   

12.
Hata S  Sorimachi H  Nakagawa K  Maeda T  Abe K  Suzuki K 《FEBS letters》2001,501(2-3):111-114
Calpain, a Ca(2+)-dependent cytosolic cysteine protease, proteolytically modulates specific substrates involved in Ca(2+)-mediated intracellular events, such as signal transduction, cell cycle, differentiation, and apoptosis. The 3D structure of m-calpain, in the absence of Ca(2+), revealed that the two subdomains (domains IIa and IIb) of the protease domain (II) have an 'open' conformation, probably due to interactions with other domains. Although the presence of an EF-hand structure was once predicted in the protease domain, no explicit Ca(2+)-binding structure was identified in the 3D structure. Therefore, it is predicted that if the protease domain is excised from the calpain molecule, it will have a Ca(2+)-independent protease activity. In this study, we have characterized a truncated human m-calpain that consists of only the protease domain. Unexpectedly, the proteolytic activity was Ca(2+)-dependent, very weak, and not effectively inhibited by calpastatin, a calpain inhibitor. Ca(2+)-dependent modification of the protease domain by the cysteine protease inhibitor, E-64c, was clearly observed as a SDS-PAGE migration change, indicating that the conformational changes of this domain are a result of Ca(2+) binding. These results suggest that the Ca(2+) binding to domain II, as well as to domains III, IV, and VI, is critical in the process of complete activation of calpain.  相似文献   

13.
Parvalbumins (PV) are calcium-binding proteins, all sharing the common helix-loop-helix (EF-hand) motif. This motif contains a central twelve-residue Ca(2+)-binding loop with the flanking helices positioned roughly perpendicular to each other. The precise role of these coordination residues has been the subject of intense studies. In this work, we focus on the coordination position 5 in the CD Ca(2+)-binding site of silver hake parvalbumin isoform B (SHPV-B). The most common residue at site 5 of calcium-binding loop in canonical EF-hands is Asp [B.J. Marsden, G.S. Shaw, B.D. Sykes, Biochem. Cell Biol. 68 (1990) 587-601], but in the CD site of PV, this position is almost always serine (Ser). The substitution of Ser with Asp will add the 5th carboxylate residue in the CD coordination sphere. However, as predicted by the acid pair hypothesis, the Ca(2+)-binding affinity would be maximized in an EF-hand motif that has four carboxylate ligands paired along the +/-x, and +/-z-axes [R.E. Reid, R.S. Hodges, J. Theor. Biol. 84 (1980) 401-444]. Molecular dynamics simulations and free energy calculations were employed to investigate the influence of Ser to Asp mutation at position 5 on calcium-binding affinity. We found that the Asp variant exhibited remarkable stability during the entire molecular dynamics simulation, with not only the retention of the Ca(2+)-binding site, but also increased compactness in the coordination sphere. The S55D fragment also accommodated Ca(2+) well. We conclude that the reason why Asp which is the most common residue at site 5 of calcium-binding loop in canonical EF-hands has never been identified at this position experimentally for PVs might be related to its physiological functions.  相似文献   

14.
Recoverin is an EF-hand Ca(2+)-binding protein that is suggested to control the activity of the G-protein-coupled receptor kinase GRK-1 or rhodopsin kinase in a Ca(2+)-dependent manner. It undergoes a Ca(2+)-myristoyl switch when Ca(2+) binds to EF-hand 2 and 3. We investigated the mechanism of this switch by the use of point mutations in EF-hand 2 (E85Q) and 3 (E121Q) that impair their Ca(2+) binding. EF-hand 2 and 3 display different properties and serve different functions. Binding of Ca(2+) to recoverin is a sequential process, wherein EF-hand 3 is occupied first followed by the filling of EF-hand 2. After EF-hand 3 bound Ca(2+), the subsequent filling of EF-hand 2 triggers the exposition of the myristoyl group and in turn binding of recoverin to membranes. In addition, EF-hand 2 controls the mean residence time of recoverin at membranes by decreasing the dissociation rate of recoverin from membranes by 10-fold. We discuss this mechanism as one critical step for inhibition of rhodopsin kinase by recoverin.  相似文献   

15.
Finley NL  Howarth JW  Rosevear PR 《Biochemistry》2004,43(36):11371-11379
Cardiac troponin C (cTnC) is the Ca(2+)-binding component of the troponin complex and, as such, is the Ca(2+)-dependent switch in muscle contraction. This protein consists of two globular lobes, each containing a pair of EF-hand metal-binding sites, connected by a linker. In the N lobe, Ca(2+)-binding site I is inactive and Ca(2+)-binding site II is primarily responsible for initiation of muscle contraction. The C lobe contains Ca(2+)/Mg(2+)-binding sites III and IV, which bind Mg(2+) with lower affinity and play a structural as well as a secondary role in modulating the Ca(2+) signal. To understand the structural consequences of Ca(2+)/Mg(2+) exchange in the C lobe, we have determined the NMR solution structure of the Mg(2+)-loaded C lobe, cTnC(81-161), in a complex with the N domain of cardiac troponin I, cTnI(33-80), and compared it with a refined Ca(2+)-loaded structure. The overall tertiary structure of the Mg(2+)-loaded C lobe is very similar to that of the refined Ca(2+)-loaded structure as evidenced by the root-mean-square deviation of 0.94 A for all backbone atoms. While metal-dependent conformational changes are minimal, substitution of Mg(2+) for Ca(2+) is characterized by condensation of the C-terminal portion of the metal-binding loops with monodentate Mg(2+) ligation by the conserved Glu at position 12 and partial closure of the cTnI hydrophobic binding cleft around site IV. Thus, conformational plasticity in the Ca(2+)/Mg(2+)-dependent binding loops may represent a mechanism to modulate C-lobe cTnC interactions with the N domain of cTnI.  相似文献   

16.
S100B is a dimeric Ca(2+)-binding protein that undergoes a 90 +/- 3 degrees rotation of helix 3 in the typical EF-hand domain (EF2) upon the addition of calcium. The large reorientation of this helix is a prerequisite for the interaction between each subunit of S100B and target proteins such as the tumor suppressor protein, p53. In this study, Tb(3+) was used as a probe to examine how binding of a 22-residue peptide derived from the C-terminal regulatory domain of p53 affects the rate of Ca(2+) ion dissociation. In competition studies with Tb(3+), the dissociation rates of Ca(2+) (k(off)) from the EF2 domains of S100B in the absence and presence of the p53 peptide was determined to be 60 and 7 s(-)(1), respectively. These data are consistent with a previously reported result, which showed that that target peptide binding to S100B enhances its calcium-binding affinity [Rustandi et al. (1998) Biochemistry 37, 1951-1960]. The corresponding Ca(2+) association rate constants for S100B, k(on), for the EF2 domains in the absence and presence of the p53 peptide are 1.1 x 10(6) and 3.5 x 10(5) M(-)(1) s(-)(1), respectively. These two association rate constants are significantly below the diffusion control ( approximately 10(9) M(-)(1) s(-)(1)) and likely involve both Ca(2+) ion association and a Ca(2+)-dependent structural rearrangement, which is slightly different when the target peptide is present. EF-hand calcium-binding mutants of S100B were engineered at the -Z position (EF-hand 1, E31A; EF-hand 2, E72A; both EF-hands, E31A + E72A) and examined to further understand how specific residues contribute to calcium binding in S100B in the absence and presence of the p53 peptide.  相似文献   

17.
The type I dockerin domain is responsible for incorporating its associated glycosyl hydrolase into the bacterial cellulosome, a multienzyme cellulolytic complex, via its interaction with a receptor domain (cohesin domain) of the cellulosomal scaffolding subunit. The highly conserved dockerin domain is characterized by two Ca(2+)-binding sites with sequence similarity to the EF-hand motif. Here, we present the three-dimensional solution structure of the 69 residue dockerin domain of Clostridium thermocellum cellobiohydrolase CelS. Torsion angle dynamics calculations utilizing a total of 728 NOE-derived distance constraints and 79 torsion angle restraints yielded an ensemble of 20 structures with an average backbone r.m.s.d. for residues 5 to 29 and 32 to 66 of 0.54 A from the mean structure. The structure consists of two Ca(2+)-binding loop-helix motifs connected by a linker; the E helices entering each loop of the classical EF-hand motif are absent from the dockerin domain. Each dockerin Ca(2+)-binding subdomain is stabilized by a cluster of buried hydrophobic side-chains. Structural comparisons reveal that, in its non-complexed state, the dockerin fold displays a dramatic departure from that of Ca(2+)-bound EF-hand domains. A putative cohesin-binding surface, comprised of conserved hydrophobic and basic residues, is proposed, providing new insight into cellulosome assembly.  相似文献   

18.
Li Z  Lin Q  Yang DS  Ewart KV  Hew CL 《Biochemistry》2004,43(46):14547-14554
The type II antifreeze protein of Atlantic herring (Clupea harengus harengus) requires Ca(2+) as a cofactor to inhibit the growth of ice crystals. On the basis of homology modeling with Ca(2+)-dependent lectin domains, five residues of herring antifreeze protein (hAFP) are predicted to be involved in Ca(2+) binding: Q92, D94, E99, N113, and D114. The role of E99, however, is less certain. A previous study on a double mutant EPN of hAFP suggested that the Ca(2+)-binding site of hAFP was the ice-binding site. However, it is possible that Ca(2+) might function distantly to affect ice binding. Site-directed mutagenesis was performed on the Ca(2+)-coordinating residues of hAFP in order to define the location of the ice-binding site and to explore the role of these residues in antifreeze activity. Properties of the mutants were investigated in terms of their structural integrity and antifreeze activity. Equilibrium dialysis analysis demonstrated that E99 is a Ca(2+)-coordinating residue. Moreover, proteolysis protection assay revealed that removal of Ca(2+) affected the conformation of the Ca(2+)-binding loop rather than the core structure of hAFP. This finding rules out the possibility that Ca(2+) might act at a distance via a conformational change to affect the function of hAFP. Substitutions at positions 99 and 114 resulted in severely reduced thermal hysteresis activity. These data indicate that the ice-binding site of hAFP is located at the Ca(2+)-binding site and the loop region defined by residues 99 and 114 is important for antifreeze activity.  相似文献   

19.
The EF-hand calcium-binding loop III from calmodulin was inserted with glycine linkers into the scaffold protein CD2.D1 at three locations to study site-specific calcium binding properties of EF-hand motifs. After insertion, the host protein retains its native structure and forms a 1:1 metal-protein complex for calcium and its analog, lanthanum. Tyrosine-sensitized Tb3+ energy transfer exhibits metal binding and La3+ and Ca2+ compete for the metal binding site. The grafted EF-loop III in different environments has similar La3+ binding affinities, suggesting that it is largely solvated and functions independently from the host protein.  相似文献   

20.
A molecule of the photoreceptor Ca(2+)-binding protein recoverin contains four potential EF-hand Ca(2+)-binding sites, of which only two, the second and the third, are capable of binding calcium ions. We have studied the effects of substitutions in the second, third and fourth EF-hand sites of recoverin on its Ca(2+)-binding properties and some other characteristics, using intrinsic fluorescence, circular dichroism spectroscopy and differential scanning microcalorimetry. The interaction of the two operating binding sites of wild-type recoverin with calcium increases the protein's thermal stability, but makes the environment around the tryptophan residues more flexible. The amino acid substitution in the EF-hand 3 (E121Q) totally abolishes the high calcium affinity of recoverin, while the mutation in the EF-hand 2 (E85Q) causes only a moderate decrease in calcium binding. Based on this evidence, we suggest that the binding of calcium ions to recoverin is a sequential process with the EF-hand 3 being filled first. Estimation of Ca(2+)-binding constants according to the sequential binding scheme gave the values 3.7 x 10(6) and 3.1 x 10(5) M(-1) for third and second EF-hands, respectively. The substitutions in the EF-hand 2 or 3 (or in both the sites simultaneously) do not disturb significantly either tertiary or secondary structure of the apo-protein. Amino acid substitutions, which have been designed to restore the calcium affinity of the EF-hand 4 (G160D, K161E, K162N, D165G and K166Q), increase the calcium capacity and affinity of recoverin but also perturb the protein structure and decrease the thermostability of its apo-form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号