首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent work has shown that paleoenvironmental genomics, i.e. the application of genomic tools to analyze preserved DNA in sedimentary records, is a promising approach to reconstruct the diversity of past planktonic communities. This provides information about past ecological and environmental changes. A major advantage of this approach is that individual species, including those that did not leave other characteristic markers, can be identified. In this study, we determined which dinoflagellate marker (i.e. 18S rDNA, dinosterol or dinocysts) provided the most detailed information about the late-Holocene succession of dinoflagellates in an Antarctic Fjord (Ellis Fjord, Vestfold Hills). The preserved rDNA revealed two intervals in the 2750-year-old sediment record. The dinoflagellate diversity was the highest until ∼1850 cal yr bp and included phylotypes related to known dinosterol producers. A lower concentration of dinosterol in sediments <1850 cal yr bp coincided with a community shift towards a predominance of the autotrophic sea-ice dinoflagellate Polarella glacialis , which is not a source of dinosterol. Remarkably, cultures of P. glacialis are known to produce other diagnostic sterols, but these were not recovered here. In addition, conspicuous resting cysts of P. glacialis were not preserved in the analyzed sediments. Overall, dinocysts were rare and the paleoenvironmental genomics approach revealed the highest diversity of dinoflagellates in Ellis Fjord, and was the only approach that recorded a shift in dinoflagellate composition at ∼1850 cal yr bp indicative of a colder climate with more extensive ice cover – this timing coincides with a period of changing climate reported for this region.  相似文献   

2.
ABSTRACT. The larvae and adults of Belgica antarctica were studied in an attempt to identify the mechanism of low temperature adaptation that enables this species to survive in the Antarctic. Larvae are freezing-tolerant during the austral summer and elaborate a complex of cryoprotectants including erythritol, glucose, sucrose and trehalose. Adults are freezing-susceptible and lack adequate quantities of cryoprotectants. Maintenance on artificial diets indicated that cryoprotectant profiles have food-source and temperature-dependent components. In addition, direct utilization of dietary cryoprotectants is suggested.  相似文献   

3.
The purpose of this study was to investigate shell growth performance in two thin-shelled pelagic gastropods from cold seawater habitats. The shells of Arctic Limacina helicina and Antarctic Limacina helicina antarctica forma antarctica are very thin, approximately 2–9 μm for shells of 0.5–6 mm in diameter. Many axial ribbed growth lines were observed on the surface of the shell of both Limacina species. Distinct axial ribs were observed on the outermost whorl, while weak or no rib-like structures were observed on the inner whorls in the larger shell of L. helicina antarctica forma antarctica. For L. helicina, no ribs were observed on small individuals with three whorls, while larger individuals had distinct ribs on the outer whorls. Shell microstructure was examined in both species. There is an inner crossed-lamellar and extremely thin outer prismatic layer in small individuals of both species, and a distinct thick inner prismatic layer was observed beneath the crossed-lamellar layer in large Antarctic individuals. Various orientations of the crossed-lamellar structure were observed in one individual. Shell structure appeared to be different between the Antarctic and Arctic species and among shells of different size.  相似文献   

4.
The complete sequence of the mitochondrial genome of the Antarctic amphipod Gondogeneia antarctica was determined to be 18,424 bp in length, and to contain 13 protein-coding genes (PCGs), 22 tRNA genes, and large (rrnL) and small (rrnS) rRNA genes. Its total A+T content is 70.1%. The G. antarctica mitogenome is the largest known among those of crustaceans, due to the existence of two relatively large intergenic non-coding sequences. The PCG arrangement of G. antarctica is identical to that of the ancestral pancrustacean ground pattern, although the tRNA arrangement differs somewhat. The complete mitogenome sequences of 68 species of pancrustacea have been added to the NCBI database, only 4 of which represent complete mitogenome sequences from amphipods. This is the first report of a mitogenome sequence of an Antarctic amphipod, and provides insights into the evolution of crustacean mitochondrial genomes, particularly in amphipods.  相似文献   

5.
The use of organic solvents as reaction media for enzymatic reactions has many advantages. Several organic solvents have been proposed as reaction media, especially for transesterifications using Candida antarctica lipase B (CalB). Among organic solvents, tert-butanol is associated with an enhanced conversion rate in bio-diesel production. Thus, it is necessary to understand the effect of tert-butanol on CalB to explain the high-catalytic efficiency compared with the reaction in other hydrophilic organic solvents. In this study, the effects of tert-butanol on the structure of CalB were investigated by MD simulations. The overall flexibility was increased in the presence of tert-butanol. The substrate entrance and the binding pocket size of CalB in tert-butanol were maintained as in TIP3P water. The distance between the catalytic residues of CalB in tert-butanol indicated a higher likelihood of forming hydrogen bonds. These structural analyses could be useful for understanding the effect of tert-butanol on lipase transesterification.  相似文献   

6.
Science has rapidly expanded its frontiers with new technologies in the 20th Century. Oceanography now is studied routinely by satellite. Predictive models are on global scales. At the same time, blooms of jellyfish and ctenophores have become problematic, especially after 1980. Although we have learned a great deal about gelatinous zooplankton ecology in the 20th Century on local scales, we generally have not scaled-up to estimate the extent, the causes, or effects of large blooms. In this age of global science, research on gelatinous zooplankton needs to utilize large-scale approaches and predictive equations. Some current techniques enable jellyfish populations (aerial, towed cameras), feeding (metabolic rates, stable isotopes), and dynamics (predictive modeling) to be studied over large spatial and temporal scales. I use examples of scyphomedusae (Aurelia spp., Cyanea capillata, Chrysaora quinquecirrha) and Mnemiopsis leidyi ctenophores, for which considerable data exist, to explore expanding from local to global scales of jellyfish trophic ecology. Regression analyses showed that feeding rates of Aurelia spp. (FR in copepods eaten medusa−1 d−1) generally could be estimated ±50% from in situ data on medusa wet weight (WW) and copepod density; temperature was not a significant factor. FR of C. capillata and C. quinquecirrha were similar to those of Aurelia spp.; the combined scyphomedusa regression underestimated measured FR of C. quinquecirrha and Aurelia spp. by 50% and 180%, respectively, and overestimated measured FR of C. capillata by 25%. Clearance rates (CR in liters cleared of copepods ctenophore−1 d−1) of M. leidyi were reduced in small containers (≤20 l), and a ratio of container-volume to ctenophore-volume of at least 2,500:1 is recommended for feeding experiments. Clearance rates were significantly related to ctenophore WW, but not to prey density or temperature, and estimated rates within 10–159%. Respiration rates of medusae and ctenophores were similar across habitats with greatly ambient different temperatures (10–30°C), and can be predicted from regressions using only mass. These regressions may permit estimation of feeding effects of gelatinous predators without exhaustive collection of feeding data in situ. I recommend that data on feeding and metabolism of jellyfish and ctenophores be entered in a database to allow generalized predictive relationships to be developed to promote inclusion of these important predators in ecosystem studies and models. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

7.
The Antarctic midge, Belgica antarctica, is exposed to frequent periods of dehydration during its prolonged larval development in the cold and dry Antarctic environment. In this study, we determined the water requirements of the larvae and the mechanisms it exploits to reduce the stress of drying. Larvae lost water at an exceptionally high rate (>10%/h) and tolerated losing a high portion (>70%) of their water content. Larvae were unable to absorb water from subsaturated water vapor (< or = 0.98 a(v)) to replenish their water stores, thus this midge relies exclusively on the intake of liquid water to increase its pool of body water and maintain water balance. To reduce dehydration stress, the midge employed a variety of mechanisms. Behaviorally, the larvae suppressed water loss by clustering. In response to slow dehydration, glycerol concentration increased 2-fold and trehalose concentration increased 3-fold, responses that are known to decrease the rate of water loss and increase dehydration tolerance. No changes in the mass of cuticular lipids occurred in response to desiccation, but the observed shift to longer hydrocarbons likely contributes to reduced water loss as the larvae dehydrate. As the larvae dehydrated, their oxygen consumption rate dropped, resulting in a reduction of water loss by respiration. Lastly, one bout of slow dehydration also enhanced the larva's ability to survive subsequent dehydration, suggesting that the larvae have the capacity for drought acclimation. Thus, these hydrophilic midge larvae prevent dehydration by multiple mechanisms that collectively reduce the water loss rate and increase dehydration tolerance.  相似文献   

8.
Larvae of the Antarctic midge, Belgica antarctica, routinely face periods of limited water availability in their natural environments on the Antarctic Peninsula. As a result, B. antarctica is one of the most dehydration-tolerant insects studied, surviving up to 70% loss of its body water. While previous studies have characterized the physiological effects of a single bout of dehydration, in nature larvae are likely to experience multiple bouts of dehydration throughout their lifetime. Thus, we examined the physiological consequences of repeated dehydration and compared results to larvae exposed to a single, prolonged period of dehydration. For the repeated dehydration experiment, larvae were exposed to 1-5 cycles of 24 h dehydration at 75% RH followed by 24 h rehydration. Each bout of dehydration resulted in 30-40% loss of body water, with a concomitant 2- to 3-fold increase in body fluid osmolality. While nearly 100% of larvae survived a single bout of dehydration, <65% of larvae survived five such cycles. Larvae subjected to multiple bouts of dehydration also experienced severe depletion of carbohydrate energy reserves; glycogen and trehalose content decreased with each successive cycle, with larvae losing 89% and 48% of their glycogen and trehalose, respectively, after five cycles of dehydration/rehydration. Larvae exposed to prolonged dehydration (99% RH for 10d) had 26% less water, 43% less glycogen, and 27% less lipid content than controls, but did not experience any mortality. Thus, both repeated and prolonged dehydration results in substantial energetic costs that are likely to negatively impact fitness.  相似文献   

9.
In many insects, the rapid cold-hardening (RCH) response significantly enhances cold tolerance in minutes to hours. Larvae of the Antarctic midge, Belgica antarctica, exhibit a novel form of RCH, by which they increase their freezing tolerance. In this study, we examined whether cold-sensing and RCH in B. antarctica occur in vitro and whether calcium is required to generate RCH. As demonstrated previously, 1 h at -5 degrees C significantly increased organismal freezing tolerance at both -15 degrees C and -20 degrees C. Likewise, RCH enhanced cell survival of fat body, Malpighian tubules, and midgut tissue of larvae frozen at -20 degrees C. Furthermore, isolated tissues retained the capacity for RCH in vitro, as demonstrated with both a dye exclusion assay and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based viability assay, thus indicating that cold-sensing and RCH in B. antarctica occur at the cellular level. Interestingly, there was no difference in survival between tissues that were supercooled at -5 degrees C and those frozen at -5 degrees C, suggesting that temperature mediates the RCH response independent of the freezing of body fluids. Finally, we demonstrated that calcium is required for RCH to occur. Removing calcium from the incubating solution slightly decreased cell survival after RCH treatments, while blocking calcium with the intracellular chelator BAPTA-AM significantly reduced survival in the RCH treatments. The calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) also significantly reduced cell survival in the RCH treatments, thus supporting a role for calcium in RCH. This is the first report implicating calcium as an important second messenger in the RCH response.  相似文献   

10.
Aquaporin (AQP) water channel proteins play key roles in water movement across cell membranes. Extending previous reports of cryoprotective functions in insects, this study examines roles of AQPs in response to dehydration, rehydration, and freezing, and their distribution in specific tissues of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae). When AQPs were blocked using mercuric chloride, tissue dehydration tolerance increased in response to hypertonic challenge, and susceptibility to overhydration decreased in a hypotonic solution. Blocking AQPs decreased the ability of tissues from the midgut and Malpighian tubules to tolerate freezing, but only minimal changes were noted in cellular viability of the fat body. Immuno-localization revealed that a DRIP-like protein (a Drosophila aquaporin), AQP2- and AQP3 (aquaglyceroporin)-like proteins were present in most larval tissues. DRIP- and AQP2-like proteins were also present in the gut of adult midges, but AQP4-like protein was not detectable in any tissues we examined. Western blotting indicated that larval AQP2-like protein levels were increased in response to dehydration, rehydration and freezing, whereas, in adults DRIP-, AQP2-, and AQP3-like proteins were elevated by dehydration. These results imply a vital role for aquaporin/aquaglyceroporins in water relations and freezing tolerance in B. antarctica.  相似文献   

11.
12.
La Rocca  N.  Andreoli  C.  Giacometti  G. M.  Rascio  N.  Moro  I. 《Photosynthetica》2009,47(3):471-479
Ultrastructural and physiological effects of exposure to 1 ppm and 5 ppm of cadmium (Cd) on cultured cells of Koliella antarctica, a green microalga from Antarctica, were investigated. The amount of Cd in the alga rose with the increase of the metal concentration in the growth medium and most Cd remained outside the cells, bound to the components of the cell walls. The increase of Cd in the microalga was concomitant with the decrease of other elements, mainly calcium (Ca). Exposure to 1 ppm Cd slowed culture growth by inhibiting cell division and also caused the development of some misshapen cells with chloroplast showing disordered thylakoids. However, this concentration did not substantially affect the chlorophyll (Chl) content or photosystem (PS) activity. At 5 ppm, Cd cell growth suddenly stopped and some cells lysed. After a week of Cd contamination, the cells were enlarged and severely damaged. The chloroplasts showed great ultrastructural alterations and a reduced Chl content. Cd exposure negatively affected PSII, whose activity was almost completely lost after four days.  相似文献   

13.
The external morphology, anatomy and histology of the Antarctic notaspidean Bathyberthella antarctica Willan & Bertsch, 1987 is described and the intraspecific variability presented. The species is compared with the only other known pleurobranch from the high Antarctic zone, Tomthompsonia antarctica (Thiele, 1912).  相似文献   

14.
Summary We studied the thermoregulatory capacity of Antarctic Petrel chicks, Thalassoica antarctica, breeding in a large colony in Queen Maud Land (71°53S,5°10E) on the Antarctic continent. Compared to newly hatched chicks of other birds, those of the Antarctic Petrel are characterized by a relatively high standard metabolic rate (SMR) and thermal conductance. Their metabolic scope is limited, however, being only 1.6 times the SMR, and they consequently depend on parental brooding to maintain Tb. At an age of 11 days the chicks become thermally independent and are left alone in the nest. The chicks keep a relatively high body temperature (>36°C) throughout their early development and we found no indication that they normally experience hypothermia. A significant positive relationship between latitude of breeding and SMR of the hatchlings is shown to exist for procellariiform birds. It is suggested that the high SMR found in Antarctic Petrel hatchlings could be a prerequisite for achieving a high growth rate, rather than being of any thermoregulatory significance.Publication no. 105 from the Norwegian Antarctic Research Expeditions (1984/1985)  相似文献   

15.
16.
Antarctic Petrel Thalassoica antarctica incubation and brooding effort was studied at Svarthamaren, Dronning Maud Land, during the austral summer of 1991–1992. The females probably left the nest site shortly after egg laying. The duration of incubation and brooding shifts as well as the daily weight loss (absolute and proportionate) were comparable with those of other similar-sized procellariform species. Males spent more time incubating and brooding than did females, suggesting higher female energy stress due to egg laying. Incubating birds which were below average weight were likely to desert the nests before their mates returned from feeding trips. Both males and females lost approximately one-fifth of their body-weight during their first incubation shifts. Nevertheless, they increased their initial weights from egg laying to hatching and had their highest initial weights when they returned to start the shift during which the egg hatched. No factors related to adult body-weight explained the duration of the incubation shifts. Both males and females gained weight at a higher rate when at sea than they lost it during incubation, and it is suggested that factors unrelated to food availability or individual feeding skills may be important in regulating the duration of the incubation shifts and the stay at sea.  相似文献   

17.
Abstract. 1. The sex ratio in populations of the Antarctic chironomid Belgica antarctica approximates 1:1 at eclosion.
2. Male predominance in surface populations of the short-lived adult persists throughout the summer. The mean ratio, based on data from surface aggregations (austral summer 1977–78) and from sticky traps (1978–79) is about 6:1, with a steady seasonal decline from 10–20:1 to 2–5:1.
3. Males live slightly longer than females but the difference does not account for observed ratios.
4. Samples of adult populations taken from subsurface sites have sex ratios nearer to equality than surface populations.
5. It is concluded that the male-dominated surface populations are equivalent to the male swarms typical of winged Chironomidae.
6. Capture of airborne adults shows that aerial transport as well as water-surface rafting may play a role in dispersal of adults.  相似文献   

18.
Although larvae of the Antarctic midge, Belgica antarctica, live for more than 2 years, the adult and embryonic stages are brief and are less well known than the larvae. In this report, we provide additional details of these understudied life stages with laboratory observation on adult emergence, longevity, preoviposition period and embryonic development. Male adults emerged slightly earlier than females, and they also lived longer. More than a half (57 %) of the adults that emerged in the laboratory were males. Females produced only a single egg mass and died within a day after oviposition. Embryonic development required 16 days at 4 °C, and prior to hatching, the pharate larvae perform a distinct sequence of behaviors that include drinking and peristaltic movement. We also discuss points that need to be resolved for laboratory propagation of this species.  相似文献   

19.
The photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica was examined by measuring whole-canopy CO2 gas exchange and chlorophyll (Chl) a fluorescence of plants growing near Palmer Station along the Antarctic Peninsula. Both species had negligible midday net photosynthetic rates (Pn) on warm, usually sunny, days (canopy air temperature [Tc]> 20°C), but had relatively high Pn on cool days (Tc<10°C). Laboratory measurements of light and temperature responses of Pn showed that high temperature, not visible irradiance, was responsible for depressions in Pn on warm sunny days. The optimal leaf temperatures (Tl) for Pn in C. quitensis and D. antarctica were 14 and 10°C, respectively. Both species had substantial positive Pn at 0°C Tl, which were 28 (C. quitensis) and 32% (D. antarctica) of their maximal Pn, and we estimate that their low-temperature compensation points occurred at ?2°C Tl (C. quitensis) and ?3°C (D. antarctica). Because of the strong warming trend along the peninsula over recent decades and predictions that this will continue, we were particularly interested in the mechanisms responsible for their negligible rates of Pn on warm days and their unusually low high-temperature compensation points (i.e., 26°C in C. quitensis and 22°C in D. antarctica). Low Pn at supraoptimal temperature (25°C) appeared to be largely due to high rates of temperature-enhanced respiration. However, there was also evidence for direct impairment of the photosynthetic apparatus at supraoptimal temperature, based on Chl fluorescence and Pn/intercellular CO2 concentration (ci) response curve analyses. The breakpoint or critical temperature (Tcr) of minimal fluorescence (Fo) was ≈42°C in both species, which was well above the temperatures where reductions in Pn were evident, indicating that thylakoid membranes were structurally intact at supraoptimal temperatures for Pn. The optimal Tl for photochemical quenching (qp) and the quantum yield of photosystem II (PSII) electron transfer (φPSII) were 9 and 7°C in C. quitensis and D. antarctica, respectively. Supraoptimal temperatures resulted in lower qp and greater non-photochemical quenching (qNP), but had little effect on Fo, maximal fluorescence (Fm) or the ratio of variable to maximal fluorescence (Fv/Fm) in both species. In addition, carboxylation efficiencies or initial slopes of their Pn/ci response were lower at supraoptimal temperatures, suggesting reduced activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Although continued warming along the peninsula will increase the frequency of supraoptimal temperatures, Tc at our field site averaged 4.3°C and was below the temperature optima for Pn in these species for the majority of diurnal periods (86%) during the growing season, suggesting that continued warming will usually improve their rates of Pn.  相似文献   

20.
Records of extant Monoplacophora are still scarce, often limited to single specimens or empty shells. Little is known about monoplacophoran diversity, distribution and biology. This study summarizes the present distributional knowledge of all Antarctic monoplacophorans, adding new records from the Eastern Weddell Sea. The record of Laevipilina antarctica from over 3,000 m depth extends its previously known bathymetrical range from 210 to 644 m down to abyssal depths. Special symbiosis with bacteria might contribute to this remarkable eurybathy that is unique amongst extant monoplacophoran species. L. antarctica now is known from several stations along the shelf and slope of the Eastern Weddell and Lazarev Seas. Micropilina arntzi seems limited to the shelf and upper slope of the Lazarev Sea. An undescribed Laevipilina species is known only from a single station at the upper slope of the Eastern Weddell Sea. Distributional patterns are discussed and correlated to environmental conditions and available biological information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号