首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscles subjected to lengthening contractions exhibit evidence of subcellular disruption, arguably a result of fiber strain magnitude. Due to the difficulty associated with measuring fiber strains during lengthening contractions, fiber length estimates have been used to formulate relationships between the magnitude of injury and mechanical measures such as fiber strain. In such protocols, the series compliance is typically minimized by removing the distal tendon and/or preactivating the muscle. These in vitro and in situ experiments do not represent physiological contractions well where fiber strain and muscle strain may be disassociated; thus the mechanisms of in vivo muscle injury remain elusive. The purpose of this paper was to quantify fiber strains during lengthening contractions in vivo and assess the potential role of fiber strain in muscle injury following repetitive stretch-shortening cycles. Using intact New Zealand White rabbit dorsiflexors, fiber strain and joint torque were measured during 50 stretch-shortening cycles. We were able to show that fiber length changes are disassociated from muscle tendon unit length changes and that complex fiber dynamics during these cycles prevent easy estimates of fiber strains. In addition, fiber strains vary, depending on how they are defined, and vary from repetition to repetition, thereby further complicating the potential relationship between muscle injury and fiber strain. We conclude from this study that, during in vivo stretch-shortening cycles, the relationship between fiber strain and muscle injury is complex. This is due, in part, to temporal effects of repeated loading on fiber strain magnitude that may be explained by an increasing compliance of the contractile element as exercise progresses.  相似文献   

2.
The effect of muscle length on neural drive (here termed "neural activation") was investigated from electromyographic activities and activation levels (twitch interpolation). The neural activation was measured in nine men during isometric and concentric (30 and 120 degrees /s) knee extensions for three muscle lengths (35, 55, and 75 degrees knee flexion, i.e., shortened, intermediate, and lengthened muscles, respectively). Long (76 degrees ), medium (56 degrees ), and short (36 degrees ) ranges of motion were used to investigate the effect of the duration of concentric contraction. Neural activation was found to depend on muscle length. Reducing the duration of contraction had no effect. Neural activation was higher with short muscle length during isometric contractions and was weaker for shortened than for intermediate and lengthened muscles performing 120 degrees /s concentric contractions. Muscle length had no effect on 30 degrees /s concentric neural activation. Peripheral mechanisms and discharge properties of the motoneurons could partly explain the observed differences in the muscle length effect. We thus conclude that muscle length has a predominant effect on neural activation that would modulate the angular velocity dependency.  相似文献   

3.
The aim of the present study was to investigate the behavior of human muscle fascicles during dynamic contractions. Eight subjects performed maximal isometric dorsiflexion contractions at six ankle joint angles and maximal isokinetic concentric and eccentric contractions at five angular velocities. Tibialis anterior muscle architecture was measured in vivo by use of B-mode ultrasonography. During maximal isometric contraction, fascicle length was shorter and pennation angle larger compared with values at rest (P < 0.01). During isokinetic concentric contractions from 0 to 4.36 rad/s, fascicle length measured at a constant ankle joint angle increased curvilinearly from 49.5 to 69.7 mm (41%; P < 0.01), whereas pennation angle decreased curvilinearly from 14.8 to 9.8 degrees (34%; P < 0.01). During eccentric muscle actions, fascicles contracted quasi-isometrically, independent of angular velocity. The behavior of muscle fascicles during shortening contractions was believed to reflect the degree of stretch applied to the series elastic component, which decreases with increasing contraction velocity. The quasi-isometric behavior of fascicles during eccentric muscle actions suggests that the series elastic component acts as a mechanical buffer during active lengthening.  相似文献   

4.
Although skeletal muscle perfusion is fundamental to proper muscle function, in vivo measurements are typically limited to those of limb or arterial blood flow, rather than flow within the muscle bed itself. We present a noninvasive functional MRI (fMRI) technique for measuring perfusion-related signal intensity (SI) changes in human skeletal muscle during and after contractions and demonstrate its application to the question of occlusion during a range of contraction intensities. Eight healthy men (aged 20-31 yr) performed a series of isometric ankle dorsiflexor contractions from 10 to 100% maximal voluntary contraction. Axial gradient-echo echo-planar images (repetition time = 500 ms, echo time = 18.6 ms) were acquired continuously before, during, and following each 10-s contraction, with 4.5-min rest between contractions. Average SI in the dorsiflexor muscles was calculated for all 240 images in each contraction series. Postcontraction hyperemia for each force level was determined as peak change in SI after contraction, which was then scaled to that obtained following a 5-min cuff occlusion of the thigh (i.e., maximal hyperemia). A subset of subjects (n = 4) performed parallel studies using venous occlusion plethysmography to measure limb blood flow. Hyperemia measured by fMRI and plethysmography demonstrated good agreement. Postcontraction hyperemia measured by fMRI scaled with contraction intensity up to approximately 60% maximal voluntary contraction. fMRI provides a noninvasive means of quantifying perfusion-related changes during and following skeletal muscle contractions in humans. Temporal changes in perfusion can be observed, as can the heterogeneity of perfusion across the muscle bed.  相似文献   

5.
The study compared changes in intramuscular and surface recordings of EMG amplitude with ultrasound measures of muscle architecture of the elbow flexors during a submaximal isometric contraction. Ten subjects performed a fatiguing contraction to task failure at 20% of maximal voluntary contraction force. EMG activity was recorded in biceps brachii, brachialis, and brachioradialis muscles using intramuscular and surface electrodes. The rates of increase in the amplitude of the surface EMG for the long and short heads of biceps brachii and brachioradialis were greater than those for the intramuscular recordings measured at different depths. The amplitude of the intramuscular recordings from three muscles increased at a similar rate (P = 0.13), as did the amplitude of the three surface recordings from two muscles (P = 0.83). The increases in brachialis thickness (27.7 +/- 5.7 to 30.9 +/- 3.5 mm; P < 0.05) and pennation angle (10.9 +/- 3.5 to 16.5 +/- 4.8 degrees ; P = 0.003) were not associated with the increase in intramuscular EMG amplitude (P > 0.58). The increase in brachioradialis thickness (22.8 +/- 4.8 to 25.5 +/- 3.4 mm; P = 0.0075) was associated with the increase in the amplitude for one of two intramuscular EMG signals (P = 0.007, r = 0.79). The time to failure was more strongly associated with the rate of increase in the amplitude of the surface EMG than that for the intramuscular EMG, which suggests that the surface measurement provides a more appropriate measure of the change in muscle activation during a fatiguing contraction.  相似文献   

6.
Numerical models of contracting muscle offer a powerful tool to study local mechanical load. For validation of these models, the spatial and temporal distribution of strain was quantified in fixed-end contracting rat tibialis anterior muscle in situ at optimal muscle length (L(o)) and at 120 degrees plantar flexion as well as at 125 and 33Hz stimulation frequency. We studied the hypothesis that after termination of stimulation in situ muscle segments near the motor endplates elongate while segments away from the endplates shorten. We show that both spatial and temporal inhomogeneities in muscle deformation occurred during contraction. Muscle plateau shortening strain equalled 4.1%. Maximal plateau shortening of a muscle segment was much larger (9.6%) and occurred distally (at 0.26 of the scaled length of the muscle). Manipulating torque levels by decreasing the stimulation frequency at the same muscle length induced a decrease in torque ( approximately 20%) with a smaller effect on the level and no effect on the pattern of muscle deformation. During relaxation, distal segments actively shortened at the expense of proximal muscle segments, which elongated. The segments undergoing lengthening were nearer to motor endplates than segments undergoing shortening.In conclusion, the present study provides experimental data on magnitude of contraction-induced deformation needed for validation of numerical models. Local muscle deformation is heterogeneous both temporally and spatially and may be related to proximity to the motor endplates.  相似文献   

7.
The mechanical efficiency of rat cardiac muscle was determined using a contraction protocol involving cyclical, sinusoidal length changes and phasic stimulation at physiological frequencies (1-4 Hz). Experiments were performed in vitro (27 degrees C) using rat left ventricular papillary muscles. Efficiency was determined from measurements of the net work performed and enthalpy produced by muscles during a series of 40 contractions. Net mechanical efficiency was defined as the percentage of the total, suprabasal enthalpy output that appeared as mechanical work. Maximum efficiency was approximately 15% at contraction frequencies between 2 and 2.5 Hz. At lower and higher frequencies, efficiency was approximately 10%. Enthalpy output per cycle was independent of cycle frequency at all but the highest frequency used. The basis of the high efficiency between 2 and 2.5 Hz was that work output was also greatest at these frequencies. At these frequencies, the duration of the applied length change was well matched to the kinetics of force generation, and active force generation occurred throughout the shortening period.  相似文献   

8.
9.
10.
It is well known that muscular force production is history-dependent, which results in enhanced (RFE) and depressed (RFD) steady-state forces after stretching and shortening, respectively. However, it remains unclear if force-enhancing mechanisms can contribute to increased performance during in vivo stretch-shortening cycles (SSCs) of human locomotor muscles. The purpose of this study was to investigate whether RFE-related mechanisms contribute to enhanced force and power output during SSCs of the human plantar flexor muscles. Net ankle torques of fourteen participants were measured during and after pure isometric, pure stretch, pure shortening, and SSC contractions when the triceps surae muscles were electrically stimulated at a submaximal level that resulted in 30% of their maximum isometric torque. Dynamic contractions were performed over an amplitude of 15°, from 5° plantar flexion to 10° dorsiflexion, at a speed of 120° s−1. External ankle work during shortening was 11.6% greater during SSCs compared to pure shortening contractions (p = .003). Additionally, RFD after SSCs (8.6%) was reduced compared to RFD after pure shortening contractions (12.0%; p < .05). It is therefore concluded that RFE-related mechanisms contribute to increased performance following SSCs of human locomotor muscles. Since RFD after SSCs decreased although work during shortening was increased, we speculate that the relevant mechanism lies outside actin-myosin interaction. Finally, our data suggests that RFE might be relevant and beneficial for human locomotion whenever a muscle is stretched, but this needs to be confirmed.  相似文献   

11.
The purpose of this study was to use an electromyography (EMG) based muscle model to investigate the performance enhancement of stretch-shortening cycle (SSC) tasks at different elbow flexion-extension velocities. A torque motor was used to oscillate the forearms of seven healthy male subjects (23-40 years) during SSC and non-SSC contractions at four frequencies of movement (.58, 1.5, 2.4 and 3.3Hz) over a range of 105 degrees -162 degrees of elbow extension. The torque was integrated as a function of joint angle to yield the work produced by the elbow flexors. The elbow flexors were transcutaneously stimulated with a voltage equivalent to 60% maximum voluntary isometric contraction torque for 4s at 50Hz. EMG of the elbow flexors and extensors was recorded from the biceps and triceps respectively. The processed EMG was used to drive a Hill based model to predict the torque of the elbow flexors. Results indicate that muscle work increases from non-SSC to SSC trials. Work decreases for SSC and non-SSC trials with increasing velocity. The simulated constant activation muscle model predicted work well for all trials and conditions, indicating muscle model accuracy. The EMG driven model predicted well for all non-SSC trials, but significantly underestimated the work for SSC tasks, suggesting that the contractile component is directly involved in optimising muscle work during SSC tasks.  相似文献   

12.
13.
To elucidate the influence of muscle length on surface EMG wave form, comparisons were made of surface EMGs of the biceps and triceps brachii muscles during isometric contractions at different muscle lengths. Muscle lengths were altered by setting the elbow joint angle at several intervals between the limits of extension and flexion. The intensity of the isometric contractions was 25% of maximum voluntary contraction at the individual joint angles. Slowing was obvious in the EMG wave forms of biceps as muscle length increased. The so-called 'Piper rhythm' appeared when the muscle was more than moderately lengthened. The slowing trend with muscle lengthening, though less marked, was also seen in triceps. Zero-cross analysis revealed quasi-linear relationships between muscle length and slowing. Frequency analysis confirmed the development of 'Piper rhythm'. An attempt was made to interpret the slowing associated with muscle lengthening in terms of the propagation of myoelectric signals in muscle fibers. given the effect of muscle length on EMG wave forms, a careful control of joint angle may be required in assessing local making fatigue when using EMG spectral indices.  相似文献   

14.
The present study aimed to investigate the effects of repetitive muscle contractions on the elasticity of human tendon structures in vivo. Before and after each endurance test, the elongation of the tendon and aponeurosis of vastus lateralis muscle (L) was directly measured by ultrasonography while the subjects performed ramp isometric knee extension up to maximal voluntary isometric contraction (MVC). Six male subjects performed muscle endurance tests that consisted of knee extension tasks with four different contraction modes: 1) 50 repetitions of maximal voluntary eccentric action for 3 s with 3 s of relaxation (ET1), 2) three sets of 50 repetitions of MVC for 1 s with 3 s of relaxation (ET2), 3) 50 repetitions of MVC for 3 s with 3 s of relaxation (ET3), and 4) 50 repetitions of 50% MVC for 6 s with 6 s of relaxation (ET4). In ET1 and ET2, there were no significant differences in L values at any force production levels between before and after endurance tests. In the cases of ET3 and ET4, however, the extent of elongation after the completion of the tests tended to be greater. The L values above 330 N in ET3 and 440 N in ET4, respectively, were significantly greater after endurance tests than before. These results suggested that the repeated longer duration contractions would make the tendon structures more compliant and that the changes in the elasticity might be not be affected by either muscle action mode or force production level but by the duration of action.  相似文献   

15.
Elements of the human central nervous system (CNS) constantly oscillate. In addition, there are also methodological factors and changes in muscle mechanics during dynamic muscle contractions that threaten the stability and consistency of transcranial magnetic stimulation (TMS) and perpherial nerve stimulation (PNS) measures.

Purpose

To determine the repeatability of TMS and PNS measures during lengthening and shortening muscle actions in the intact human tibialis anterior.

Methods

On three consecutive days, 20 males performed lengthening and shortening muscle actions at 15, 25, 50 and 80% of maximal voluntary contraction (MVC). The amplitude of the Motor Evoked Potentials (MEPs) produced by TMS was measured at rest and during muscle contraction at 90° of ankle joint position. MEPs were normalised to Mmax determined with PNS. The corticospinal silent period was recorded at 80% MVC. Hoffman reflex (H-reflex) at 10% isometric and 25% shortening and lengthening MVCs, and V-waves during MVCs were also evoked on each of the three days.

Results

With the exception of MEPs evoked at 80% shortening MVC, all TMS-derived measures showed good reliability (ICC = 0.81–0.94) from days 2 to 3. Confidence intervals (CI, 95%) were lower between days 2 and 3 when compared to days 1 and 2. MEPs significantly increased at rest from days 1 to 2 (P = 0.016) and days 1 to 3 (P = 0.046). The H-reflex during dynamic muscle contraction was reliable across the three days (ICC = 0.76–0.84). V-waves (shortening, ICC = 0.77, lengthening ICC = 0.54) and the H-reflex at 10% isometric MVC (ICC = 0.66) was generally less reliable over the three days.

Conclusion

Although it is well known that measures of the intact human CNS exhibit moment-to-moment fluctuations, careful experimental arrangements make it possible to obtain consistent and repeatable measurements of corticospinal and spinal excitability in the actively lengthening and shortening human TA muscle.  相似文献   

16.
In the rat, muscle glycogen is mobilized during the first stage of exercise, despite normoglycaemia. The aim of the present study was to examine if this process could be prevented or reduced by hyperglycaemia. Three experiments were carried out: in the first, rats were forced to run on a treadmill; in the second the gastrocnemius muscle group was made to contract by stimulation of the sciatic nerve and in the third adrenaline was administered subcutaneously. Each group was divided into two subgroups: control and enriched with glucose (hyperglycaemic). It was shown that hyperglycaemia has no effect on running-induced glycogen mobilization in hind-limb muscles of different fibre composition but prevented it totally in diaphragm muscle. Hyperglycaemia also did not affect the glycogen mobilization induced by stimulation of the sciatic nerve. However, it delayed and reduced markedly the glycogenolytic effect of adrenaline. It is concluded that increased glycogenolysis in muscles at the beginning of exercise may be a consequence of a delay in the activation of glucose transporting mechanisms in muscle cells.  相似文献   

17.
This experiment examined the effect of eccentric contraction-induced muscle damage on the stretch-shortening cycle and vertical leg spring stiffness during jumping activities. Ten moderately active male and female adult volunteers participated in this study (aged 23 +/- 2.3 years). Temporary muscle damage to the knee extensors was administered by a bout of eccentric contractions on an isokinetic dynamometer. Measurements were obtained of maximum voluntary force and of take-off velocities for single-leg countermovement jumps (CMJs), squat jumps (SJs), and drop jumps (DJs), performed on a specially constructed sledge and force plate apparatus. These measurements were obtained before and after the damage intervention, and the undamaged leg was used as a control. The results indicated that eccentric muscle damage significantly affected stretch-shortening cycle performance by causing relatively greater reductions in SJ performance than CMJ or DJ. The muscle damage intervention also significantly increased leg-spring stiffness, which indicates that the changes in leg stiffness may be an important adaptation resulting from eccentric exercise.  相似文献   

18.
Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.  相似文献   

19.
The central nervous system employs different strategies to execute specific motor tasks. Because afferent feedback during shortening and lengthening muscle contractions differs, the neural strategy underlying these tasks may be quite distinct. Cortical drive may be adjusted or afferent input regulated. The exact mechanisms are not clear. Here, we examine the control of synaptic transmission across the Ia synapse during shortening and lengthening muscle contractions. Subjects were instructed to maintain isolated activity in a single tibialis anterior (TA) motor unit while muscle length was varied from flexion to extension and back. At a fixed interval after a firing of the active motor unit, a single electrical stimulus was applied to the common peroneal nerve to activate Ia afferents from the TA muscle. We investigated the stimulus-induced change in firing probability of 19 individual low-threshold TA motor units during shortening and lengthening contractions. Any change in firing probability depends on both pre- and postsynaptic mechanisms. In this experiment, motoneuron firing rate was similar during both contraction types. There was no difference in the firing probability between shortening and lengthening contractions (0.23 +/- 0.03 and 0.20 +/- 0.02, respectively). We suggest that there is no contraction type-specific control of Ia input to the motoneurons during shortening and lengthening muscle contractions. Cortical adjustments may have occurred.  相似文献   

20.
Studies of the effect of nitric oxide (NO) synthesis inhibition were performed in the isometrically contracting blood-perfused canine gastrocnemius-plantaris muscle group. Muscle blood flow (Q) was controlled with a pump during continuous NO blockade produced with either 1 mM L-argininosuccinic acid (L-ArgSA) or N(G)-nitro-L-arginine methyl ester (L-NAME) during repetitive tetanic contractions (50-Hz trains, 200-ms duration, 1/s). Pump Q was set to match maximal spontaneous Q (1.3-1.4 ml. min(-1). g(-1)) measured in prior, brief (3-5 min) control contraction trials in each muscle. Active tension and oxygen uptake were 500-600 g/g and 200-230 microl. min(-1). g(-1), respectively, under these conditions. Within 3 min of L-ArgSA infusion, vascular resistance across the muscle (R(v)) increased significantly (from approximately 100 to 300 peripheral resistance units; P < 0.05), whereas R(v) increased to a lesser extent with L-NAME (from approximately 100 to 175 peripheral resistance units; P < 0.05). The increase in R(v) with L-ArgSA was unchanged by simultaneous infusion of 0.5-10 mM L-arginine but was reduced with 1-3 microg/ml sodium nitroprusside (41-54%). The increase in R(v) with L-NAME was reversed with 1 mM of L-arginine. Increased fatigue occurred with infusion of L-ArgSA; active tension and intramuscular pressure decreased by 62 and 66%, whereas passive tension and baseline intramuscular pressure increased by 80 and 30%, respectively. These data indicate a possible role for NO in the control of R(v) and contractility within the canine gastrocnemius-plantaris muscle during repetitive tetanic contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号