首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chloroquine (CQ) is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index). However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ) and compared with a previously synthesized bisquinoline (BAQ), both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation.  相似文献   

2.
In search of new 4-aminoquinolines which are not recognized by CQR mechanism, thiourea, thiazolidinedione and thioparabanic acid derivatives of 4-aminoquinoline were synthesized and screened for their antimalarial activities. Thiourea derivative 3 found to be the most active against CQ sensitive strain 3D7 of Plasmodium falciparum in an in vitro model with an IC50 of 6.07 ng/mL and also showed an in vivo suppression of 99.27% on day 4 against CQ resistant strain N-67 of Plasmodium yoelii.  相似文献   

3.
The direct antimalarial activity of ferroquine (FQ, SSR97193), a chloroquine (CQ) derivative, is well established. To determine whether the FQ anti-parasite activity affects the host immune properties, we have investigated its effect on several immunological parameters in young rats infected with Plasmodium berghei and compared it with that of CQ. In uninfected young rats, treatment with either drug did not show any impairment in the cellular distribution of spleen cells in their response to mitogens and did not induce the production of IL-10 in vivo. After infection, rats treated with CQ or FQ showed no parasitemia and survived with no recrudescence, in comparison with placebo. Nevertheless, FQ cured young rats more rapidly than its parent drug. Analysis of cellular distribution including CD4+TCR+, CD8+TCR+, NK and NKT cells in blood and spleen and the production of specific antibodies did not reveal any alteration of these parameters in infected young rats treated either with CQ or FQ. However, we observed a persistence of CD4+CD25+T-cells in infected CQ-treated rats when compared with infected FQ-treated rats, very likely related to the delay of blood parasite clearance by CQ-treatment. Another significant difference is that the CQ treatment dramatically inhibited the lymphoproliferative response of young infected rats when compared with FQ. Collectively, the absence of any observable immunotoxic effects due to FQ in naïve and infected young rats, together with previous results indicating the susceptibility to FQ of all Plasmodium falciparum field isolates and CQ-resistant strains make it a promising drug for malarial treatment.  相似文献   

4.
A series of new 21 chloroquine heterocyclic hybrids containing either benzylamino fragment or N-(aminoalkyl)thiazolidin-4-one moiety were synthesized and screened for their antimalarial activity against chloroquine (CQ)-sensitive 3D7 and multidrug-resistance Dd2 strains of Plasmodium falciparum. Although no compounds more active than CQ against 3D7 was found; against Dd2 strain, six compounds, four of them with benzylamino fragment, showed an excellent activity, up to 3-fold more active than CQ. Non specific cytotoxicity on J774 macrophages was observed in some compounds whereas only two of them showed liver toxicity on HepG2 cells. In addition, all active compounds inhibited the ferriprotoporphyrin IX biocrystalization process in concentrations around to CQ. In vivo preliminary results have shown that at least two compounds are as active as CQ against Plasmodium berghei ANKA.  相似文献   

5.
We report here the synthesis and in vitro antitubercular activity of a new series of ferrocenyl derivatives. The quinoline-ferrocene hybrid 5 exhibited significant activity (MIC = 2.5-5 μg/ml) against Mycobacterium tuberculosis. Results indicate that such hybrid compounds provide an efficient approach for future pharmacological developments to fight against tuberculosis. Moreover, the antimalarial drug candidate ferroquine (FQ, SSR97193) was also evaluated mainly because of its structural similarity. FQ was found to display moderate inhibitory activity (MIC = 10-15 μg/ml) against M. tuberculosis. This new drug may offer an interesting alternative in endemic area where malaria and tuberculosis coexist.  相似文献   

6.
The mechanism of antimalarial action of the ruthenium-chloroquine complex [RuCl(2)(CQ)](2) (1), previously shown by us to be active in vitro against CQ-resistant strains of Plasmodium falciparum and in vivo against P. berghei, has been investigated. The complex is rapidly hydrolyzed in aqueous solution to [RuCl(OH(2))(3)(CQ)](2)[Cl](2), which is probably the active species. This compound binds to hematin in solution and inhibits aggregation to beta-hematin at pH approximately 5 to a slightly lower extent than chloroquine diphosphate; more importantly, the heme aggregation inhibition activity of complex 1 is significantly higher than that of CQ when measured at the interface of n-octanol-aqueous acetate buffer mixtures under acidic conditions modeling the food vacuole of the parasite. Partition coefficient measurements confirmed that complex 1 is considerably more lipophilic than CQ in n-octanol-water mixtures at pH approximately 5. This suggests that the principal target of complex 1 is the heme aggregation process, which has recently been reported to be fast and spontaneous at or near water-lipid interfaces. The enhanced antimalarial activity of complex 1 is thus probably due to a higher effective concentration of the drug at or near the interface compared with that of CQ, which accumulates strongly in the aqueous regions of the vacuole under those conditions. Furthermore, the activity of complex 1 against CQ-resistant strains of P. falciparum is probably related to its greater lipophilicity, in line with previous reports indicating a lowered ability of the mutated transmembrane transporter PfCRT to promote the efflux of highly lipophilic drugs. The metal complex also interacts with DNA by intercalation, to a comparable extent and in a similar manner to uncomplexed CQ and therefore DNA binding does not appear to be an important part of the mechanism of antimalarial action in this case.  相似文献   

7.
7-Chloro-4-hydroxyquinoline (CQ) is an antitumor drug but its efficiency is not very satisfactory. This fact motivates us to study the relationship between the structure of 4-hydroxyquinoline with various substituent and its antioxidant effect against free-radical-initiated peroxidation: the hemolysis of human erythrocyte initiated thermally by water-soluble initiator, 2,2'-azobis (2-amidinopropane hydrochloride) (AAPH), acts as an experimental system. 7-Fluoro-4-hydroxyquinoline (FQ) and CQ can be synthesized by decarboxylation of 7-fluoro-4-hydroxyquinoline-3-carboxylic acid (FQCA) and 7-chloro-4-hydroxyquinoline-3-carboxylic acid (CQCA), respectively, and FQCA and CQCA are prepared by hydrolysis of ethyl 7-fluoro-4-hydroxyquinoline-3-carboxylate (FQCE) and ethyl 7-chloro-4-hydroxyquinoline-3-carboxylate (CQCE), respectively. The inhibitory concentration of 50% inhibition (IC(50)) of AAPH-induced hemolysis of the erythrocyte has been studied and found that all these chemicals dissolved in dimethyl sulfoxide (DMSO) can inhibit the free-radical-induced peroxidation. To clarify the relationship between the distributive status of the chemicals and their antioxidant effect, the chemical has been dissolved in the vesicle of dipalmitoyl phosphatidylcholine (DPPC) by sonication and suspended in the reaction system. It is found that FQCE, CQCE, FQCA and CQCA act as prooxidants either used alone or used in combination with alpha-tocopherol (TOH), demonstrating that FQCE, CQCE, FQCA and CQCA play a prooxidative role when they are packaged in the DPPC vesicle. This can be understood that the electron-attracting group, i.e. -COOC(2)H(5), -COOH, at the ortho position to the hydroxy group of quinoline makes the phenoxy radical of quinoline derivatives active by attracting negative charge from the electron-deficient radical site. These unstable free radicals preserved in DPPC vesicle can initiate additional propagation of lipid peroxidation and cause hemolysis. However, FQ and CQ without electron-attracting group are antioxidants even in DPPC vesicle either used alone, or mixed with TOH. Moreover, the antioxidative activity of FQ is much better than CQ either used alone or in combination with TOH, indicating that FQ has the potential to replace CQ to be an antioxidant drug. Therefore, the antioxidant/prooxidant effect is not only correlated with the molecular structure but also the distributive status in the reaction system.  相似文献   

8.
A series of acridine derivatives were synthesised and their in vitro antimalarial activity was evaluated against one chloroquine-susceptible strain (3D7) and three chloroquine-resistant strains (W2, Bre1 and FCR3) of Plasmodium falciparum. Structure–activity relationship showed that two positives charges as well as 6-chloro and 2-methoxy substituents on the acridine ring were required to exert a good antimalarial activity. The best compounds possessing these features inhibited the growth of the chloroquine-susceptible strain with an IC50 ? 0.07 μM, close to that of chloroquine itself, and that of the three chloroquine-resistant strains better than chloroquine with IC50 ? 0.3 μM. These acridine derivatives inhibited the formation of β-hematin, suggesting that, like CQ, they act on the haem crystallization process. Finally, in vitro cytotoxicity was also evaluated upon human KB cells, which showed that one of them 9-(6-ammonioethylamino)-6-chloro-2-methoxyacridinium dichloride 1 displayed a promising antimalarial activity in vitro with a quite good selectivity index versus mammalian cell on the CQ-susceptible strain and promising selectivity on other strains.  相似文献   

9.
A bioorganometallic approach to malaria therapy led to the discovery of ferroquine (FQ, SSR97193). To assess the importance of the electronic properties of the ferrocenyl group, cyclopentadienyltricarbonylrhenium analogues related to FQ, were synthesized. The reaction of [N-(7-chloro-4-quinolinyl)-1,2-ethanodiamine] with the cyrhetrenylaldehyde complexes (η(5)-C(5)H(4)CHO)Re(CO)(3) and [η(5)-1,2-C(5)H(3)(CH(2)OH)(CHO)]Re(CO)(3) produces the corresponding imine derivatives [η(5)-1,2-C(5)H(3)(R)(CHN-CH(2)CH(2)NH-QN)]Re(CO)(3) R=H 3a; R=CH(2)OH 3b; QN=N-(7-Cl-4-quinolinyl). Reduction of 3a and 3b with sodium borohydride in methanol yields quantitatively the amine complexes [η(5)-1,2-C(5)H(3)(R)(CH(2)-NH-CH(2)CH(2)NH-QN)]Re(CO)(3) R=H 4a; R=CH(2)OH 4b. To establish the role of the cyrethrenyl moiety in the antimalarial activity of this series, purely organic parent compounds were also synthesized and tested. Evaluation of antimalarial activity measured in vitro against the CQ-resistant strains (W2) and the CQ-susceptible strain (3D7) of Plasmodium falciparum indicates that these cyrhetrene conjugates are less active compared to their ferrocene and organic analogues. These data suggest an original mode-of-action of FQ and ferrocenyl analogues in relationship with the redox pharmacophore.  相似文献   

10.
The design, synthesis, and antimalarial activity of chimeras of thiosemicarbazones (TSC) and ferroquine (FQ) is reported. Key structural elements derived from FQ were coupled to fragments capable of coordinating metal ions. Biological evaluation was conducted against four strains of the malaria parasite Plasmodium falciparum and against the parasitic cysteine protease falcipain-2. To establish the role of the ferrocenyl moiety in the antiplasmodial activity of this series, purely organic parent compounds were also synthesized and tested. The presence of the aminoquinoline structure, allowing transport of the compounds to the food vacuole of the parasite, seems to be the major contributor to antimalarial activity.  相似文献   

11.
Despite emergence of resistance to CQ and other 4-aminoquinoline drugs in most of the endemic regions, research findings provide considerable support that there is still significant potential to discover new affordable, safe, and efficacious 4-aminoquinoline antimalarials. In present study, new side chain modified 4-aminoquinoline derivatives and quinoline-acridine hybrids were synthesized and evaluated in vitro against NF 54 strain of Plasmodium falciparum. Among the evaluated compounds, compound 17 (MIC=0.125 μg/mL) was equipotent to standard drug CQ (MIC=0.125 μg/mL) and compound 21 (MIC=0.031 μg/mL) was four times more potent than CQ. Compound 17 showed the curative response to all the treated swiss mice infected with CQ-resistant N-67 strain of Plasmodium yoelii at the doses 50 mg/kg and 25 mg/kg for four days by intraperitoneal route and was found to be orally active at the dose of 100 mg/kg for four days. The promising antimalarial potency of compound 17 highlights the significance of exploring the privileged 4-aminoquinoline class for new antimalarials.  相似文献   

12.
New drugs against malaria are urgently and continuously needed. Plasmodium parasites are exposed to higher fluxes of reactive oxygen species and need high activities of intracellular antioxidant systems. A most important antioxidative system consists of (di)thiols which are recycled by disulfide reductases (DR), namely both glutathione reductases (GR) of the malarial parasite Plasmodium falciparum and man, and the thioredoxin reductase (TrxR) of P. falciparum. The aim of our interdisciplinary research is to substantiate DR inhibitors as antimalarial agents. Such compounds are active per se but, in addition, they can reverse thiol-based resistance against other drugs in parasites. Reversal of drug resistance by DR inhibitors is currently investigated for the commonly used antimalarial drug chloroquine (CQ). Our recent strategy is based on the synthesis of inhibitors of the glutathione reductases from parasite and host erythrocyte. With the expectation of a synergistic or additive effect, double-headed prodrugs were designed to be directed against two different and essential functions of the malarial parasite P. falciparum, namely glutathione regeneration and heme detoxification. The prodrugs were prepared by linking bioreversibly a GR inhibitor to a 4-aminoquinoline moiety which is known to concentrate in the acidic food vacuole of parasites. Drug-enzyme interaction was correlated with antiparasitic action in vitro on strains resistant towards CQ and in vivo in Plasmodium berghei-infected mice as well as absence of cytotoxicity towards human cells. Because TrxR of P. falciparum was recently shown to be responsible for the residual glutathione disulfide-reducing capacity observed after GR inhibition in P. falciparum, future development of antimalarial drug-candidates that act by perturbing the redox equilibrium of parasites is based on the design of new double-drugs based on TrxR inhibitors as potential antimalarial drug candidates.  相似文献   

13.
The cyclin dependent protein kinases, Pfmrk and PfPK5, most likely play an essential role in cell cycle control and differentiation in Plasmodium falciparum and are thus an attractive target for antimalarial drug development. Various 1,3-diaryl-2-propenones (chalcone derivatives) which selectivity inhibit Pfmrk in the low micromolar range (over PfPK5) are identified. Molecular modeling shows a pair of amino acid residues within the Pfmrk active site which appear to confer this selectivity. Predicted interactions between the chalcones and Pfmrk correlate well with observed potency. Pfmrk inhibition and activity against the parasite in vitro correlate weakly. Several mechanisms of action have been suggested for chalcone derivatives and our study suggests that kinase inhibition may be an additional mechanism of antimalarial activity for this class of compounds.  相似文献   

14.
A series of mono- and di-substituted analogues of isocryptolepine have been synthesized and evaluated for in vitro antimalarial activity against chloroquine sensitive (3D7) and resistant (W2mef) Plasmodium falciparum and for cytotoxicity (3T3 cells). Di-halogenated compounds were the most potent derivatives and 8-bromo-2-chloroisocryptolepine displayed the highest selectivity index (106; the ratio of cytotoxicity (IC(50)=9005 nM) to antimalarial activity (IC(50)=85 nM)). Our evaluation of novel isocryptolepine compounds has demonstrated that di-halogenated derivatives are promising antimalarial lead compounds.  相似文献   

15.
The aim of this study was to synthesize a series of quinoline–pyrimidine hybrids and to evaluate their in vitro antimalarial activity as well as cytotoxicity. The hybrids were brought about in a two-step nucleophilic substitution process involving quinoline and pyrimidine moieties. They were screened alongside chloroquine (CQ), pyrimethamine (PM) and fixed combinations thereof against the D10 and Dd2 strains of Plasmodium falciparum. The cytotoxicity was determined against the mammalian Chinese Hamster Ovarian cell line. The compounds were all active against both strains. However, hybrid (21) featuring piperazine linker stood as the most active of all. It was found as potent as CQ and PM against the D10 strain, and possessed a moderately superior potency over CQ against the Dd2 strain (IC50: 0.157 vs 0.417 μM, ~threefold), and also displayed activity comparable to that of the equimolar fixed combination of CQ and PM against both strains.  相似文献   

16.
Ferroquine (FQ, SSR97193) is currently the most advanced organo-metallic drug candidate and about to complete phase II clinical trials as a treatment for uncomplicated malaria. This ferrocene-containing compound is active against both chloroquine-susceptible and chloroquine-resistant Plasmodium falciparum and P. vivax strains and/or isolates. This article focuses on the discovery of FQ, its antimalarial activity, the hypothesis of its mode of action, the current absence of resistance in vitro and recent clinical trials.  相似文献   

17.
Abstract

New drugs against malaria are urgently and continuously needed. Plasmodium parasites are exposed to higher fluxes of reactive oxygen species and need high activities of intracellular antioxidant systems. A most important antioxidative system consists of (di)thiols which are recycled by disulfide reductases (DR), namely both glutathione reductases (GR) of the malarial parasite Plasmodium falciparum and man, and the thioredoxin reductase (TrxR) of P. falciparum. The aim of our interdisciplinary research is to substantiate DR inhibitors as antimalarial agents. Such compounds are active per se but, in addition, they can reverse thiol-based resistance against other drugs in parasites. Reversal of drug resistance by DR inhibitors is currently investigated for the commonly used antimalarial drug chloroquine (CQ). Our recent strategy is based on the synthesis of inhibitors of the glutathione reductases from parasite and host erythrocyte. With the expectation of a synergistic or additive effect, double-headed prodrugs were designed to be directed against two different and essential functions of the malarial parasite P. falciparum, namely glutathione regeneration and heme detoxification. The prodrugs were prepared by linking bioreversibly a GR inhibitor to a 4-aminoquinoline moiety which is known to concentrate in the acidic food vacuole of parasites. Drug-enzyme interaction was correlated with antiparasitic action in vitro on strains resistant towards CQ and in vivo in Plasmodium berghei-infected mice as well as absence of cytotoxicity towards human cells. Because TrxR of P. falciparum was recently shown to be responsible for the residual glutathione disulfide-reducing capacity observed after GR inhibition in P. falciparum, future development of antimalarial drug-candidates that act by perturbing the redox equilibrium of parasites is based on the design of new double-drugs based on TrxR inhibitors as potential antimalarial drug candidates.  相似文献   

18.
A sensitive, specific and reproducible fluorescence high performance liquid chromatography (HPLC) assay has been developed for the separate or simultaneous measurement of AQ-13 (a candidate 4-aminoquinoline antimalarial), chloroquine (CQ), and their metabolites in whole blood. After liquid-solid extraction using commercially available extraction cartridges, these two aminoquinolines (AQs) and their metabolites were separated on C18 (Xterra RP18) columns using a mobile phase containing 60% borate buffer (20 mM, pH 9.0) and 40% acetonitrile with isocratic elution at a flow-rate of 1.0 ml/min. The assay uses a biologically inactive 8-chloro-4-aminoquinoline (AQ-18) as its internal standard (IS). There is a linear relationship between the concentrations of these AQs and the peak area ratio (ratio between the peak area of the AQ or metabolite and the peak area of the IS) on the chromatogram. Linear calibration curves with correlation coefficients > or = 0.997 (r2 > or = 0.995, p < 0.001) were obtained for AQ-13, CQ and their N-dealkylated metabolites. Reproducibility of the assay was excellent with coefficients of variation (CVs) < or = 3.8% for AQ-13 and its metabolites, and < or =2.5% for CQ and its metabolites. The sensitivity of the assay is 5 nM using 1.0 ml of blood and a 20 microl injection volume, and can be increased by using 5.0 ml of blood with an injection volume of 40 microl.  相似文献   

19.
Frequency of malaria and its resistance to chemotherapeutic options are emerging rapidly. To counter this problem, a series of 4-aminoquinolines having oxalamide and triazine functionalities in the side chain were synthesized and screened for their antimalarial activities. Triazine derivative 48 found to be the most active against CQ sensitive strain 3D7 of Plasmodium falciparum in an in vitro assay with an IC50 of 5.23 ng/mL and oxalamide derivative 13 showed an in vivo suppression of 70.45% on day 4 against CQ resistant strain N-67 of Plasmodium yoelii.  相似文献   

20.
The parallel acylation of N-{3-[4-(3-aminopropyl)piperazin-1-yl]propyl}-7-chloroquinolin-4-amine with polymer-bound carboxylic acids opened straightforward access to novel aminoquinolines with activity against Plasmodium falciparum strains in vitro. Using this amino scaffold prepared in solution and polymer-bound carboxylic, we have synthesized a series of 29 new compounds in good to excellent yield and purity. Biological evaluation included determination of the activity against a chloroquine (CQ) sensitive strain and a CQ resistant mutant. Most of the novel structures presented here displayed activity against both strains in the lower nanomolar range, four compounds showed an at least fourfold increase in the ratio of inhibition of CQ resistant to sensitive strains over CQ itself. These results suggest that this derivatization technique is a useful method to speed up structure-activity relationship studies on aminoquinolines toward improved activity versus CQ resistant strains of P. falciparum in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号