首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of protein farnesyltransferase inhibitor ester prodrugs of FTI-2148 (17) were synthesized in order to evaluate the effects of ester structure modification on antimalarial activity and for further development of a farnesyltransferase inhibitor with in vivo activity. Evaluation against P. falciparum in red blood cells showed that all the investigated esters exhibited significant antimalarial activity, with the benzyl ester 16 showing the best inhibition (ED50 = 150 nM). Additionally, compound 16 displayed in vivo activity and was found to suppress parasitemia by 46.1% at a dose of 50 mg kg−1 day−1 against Plasmodium berghei in mice. The enhanced inhibition potency of the esters is consistent with improved cell membrane permeability compared to that of the free acid. The results of this study suggest that protein farnesyltransferase is a valid antimalarial drug target and that the antimalarial activity of these compounds derives from a balance between the hydrophobic character and the size and conformation of the ester moiety.  相似文献   

2.
Plasmodium falciparum resistance to the former first-line antimalarials chloroquine and sulfadoxine/pyrimethamine has reached critically high levels in many malaria-endemic regions. This has spurred the introduction of several new artemisinin-based combination therapies (ACTs) that display excellent potency in treating drug-resistant malaria. Monitoring for the emergence of drug resistant P. falciparum is important for maximising the clinically effective lifespan of ACTs. Here, we provide a commentary on the article by Kaddouri et al., published in this issue of the International Journal of Parasitology, which documents the levels of susceptibility to ACT drugs and chloroquine in P. falciparum isolates from Mali. These authors report that some isolates approached a proposed in vitro threshold of resistance to monodesethyl-amodiaquine (the principal effective metabolite of amodiaquine, an important ACT partner drug), and establish baseline levels of susceptibility to the ACT drugs dihydroartemisinin and lumefantrine. The majority of clinical isolates manifested in vitro resistance to chloroquine. The authors also show good concordance between field-based assays employing a non-radioactive lactate dehydrogenase-based method of determining in vitro drug IC50 values and the well-established [3H]hypoxanthine-based radioactive method. This work illustrates a good example of drug resistance surveillance, whose global coordination is being championed by the World Antimalarial Resistance Network. Our current opinion also more generally discusses the complexities inherent to conducting in vitro investigations with P. falciparum patient isolates and correlating these findings with treatment outcome data.  相似文献   

3.
A novel series of 6-(2-chloroquinolin-3-yl)-4-substituted-phenyl-6H-1,3-oxazin-2-amines were synthesized and evaluated for in vitro antimalarial efficacy against chloroquine sensitive (MRC-02) as well as chloroquine resistant (RKL9) strains of Plasmodium falciparum. The activity tested was at nanomolar concentration. β-Hematin formation inhibition activity (BHIA50) of oxazines were determined and correlated with antimalarial activity. A reasonably good correlation (r?=?0.49 and 0.51, respectively) was observed between antimalarial activity (IC50) and BHIA50. This suggests that antimalarial mode of action of these compounds seems to be similar to that of chloroquine and involves the inhibition of hemozoin formation. Some of the compounds were showing better antimalarial activity than chloroquine against resistant strain of P. falciparum and were also found to be active in the in vivo experiment.  相似文献   

4.
Some novel derivatives of Bis-chalcone were synthesized and characterized by their physical and spectral data. All the synthesized compounds were subsequently screened for in vitro globin hydrolysis, β-hematin formation, and murine Plasmodium berghei, using chloroquine as the reference drug. Most of the synthesized compounds exhibited mild to moderate susceptibilities toward the parasite in comparison with the standard. The most active antimalarial compound was 1,1-Bis-[(3′,4′-N-(urenylphenyl)-3-(3″,4″,5″-trimethoxyphenyl)]-2-propen-1-one 5, with a percentage of inhibition of heme polymerization of 87.05?±?0.77, and this compound increased the survival time after infection, reduce the parasitemia and delay the progression of malaria.  相似文献   

5.
Countries could use the monitoring of drug resistance in malaria parasites as an effective early warning system to develop the timely response mechanisms that are required to avert the further spread of malaria. Drug resistance surveillance is essential in areas where no drug resistance has been reported, especially if neighbouring countries have previously reported resistance. Here, we present the results of a four-year surveillance program based on the sequencing of the pfcrt gene of Plasmodium falciparum populations from endemic areas of Honduras. All isolates were susceptible to chloroquine, as revealed by the pfcrt “CVMNK” genotype in codons 72-76.  相似文献   

6.
A series of 4-aminoquinolinyl-chalcone amides 1119 were synthesized through condensation of carboxylic acid-functionalized chalcone with aminoquinolines, using 1,1′-carbonyldiimidazole as coupling agent. These compounds were screened against the chloroquine sensitive (3D7) and chloroquine resistant (W2) strains of Plasmodium falciparum. Their cytotoxicity towards the WI-38 cell line of normal human fetal lung fibroblast was determined. All compounds were found active, with IC50 values ranging between 0.04–0.5 μM and 0.07–1.8 μM against 3D7 and W2, respectively. They demonstrated moderate to high selective activity towards the parasitic cells in the presence of mammalian cells. However, amide 15, featuring the 1,6-diaminohexane linker, despite possessing predicted unfavourable aqueous solubility and absorption properties, was the most active of all the amides tested. It was found to be as potent as CQ against 3D7, while it displayed a two-fold higher activity than CQ against the W2 strain, with good selective antimalarial activity (SI = 435) towards the parasitic cells. During this study, amide 15 was thus identified as the best drug-candidate to for further investigation as a potential drug in search for new, safe and effective antimalarial drugs.  相似文献   

7.
A series of 1,7-diaminoisoquinolinamines, that are expected to mediate antimalarial activity by the same mechanism employed by the chalcones, were produced. Six 7-benzylamino-1-isoquinolinamines were found to be submicromolar inhibitors in vitro of drug-resistant Plasmodium falciparum, with the best possessing activity comparable to chloroquine. Despite being developed from a lead that is a DHFR inhibitor, these compounds do not mediate their antimalarial effects by inhibition of DHFR.  相似文献   

8.
Gametocytocidal activities of pyronaridine and DNA topoisomerase II inhibitors against two isolates of multidrug-resistant Plasmodium falciparum, KT1 and KT3 were determined. After sorbitol treatment, pure gametocyte cultures of Plasmodium falciparum containing mostly young gametocytes (stage II and III) obtained on day 11 were exposed to the drugs for 48 h. The effect of the drugs on gametocyte development was assessed by counting gametocytes on day 15 of culture. Pyronaridine was the most effective gametocytocidal drug against P. falciparum isolates KT1 and KT3 with 50% inhibitory concentration of 6 and 20 nM, respectively. Moreover, the 50% inhibitory concentration of pyronaridine was lower than that of primaquine which is the only drug used to treat malaria patients harboring gametocytes. Prokaryotic (norfloxacin) and eukaryotic (amsacrine and etoposide) DNA topoisomerase II inhibitors were only effective against asexual but not sexual stages of the malaria parasites. Pyronaridine has both schizontocidal and gametocytocidal activities against the human malaria parasite, P. falciparum.  相似文献   

9.

Background

Analysis of single nucleotide polymorphisms (SNPs) derived from whole-genome studies allows for rapid evaluation of genome-wide diversity, and genomic epidemiology studies of Plasmodium falciparum provide insights into parasite population structure, gene flow, drug resistance and vaccine development. In areas with adequate cold chain facilities, large volumes of leukocyte-depleted patient blood can be frozen for use in parasite genomic analyses. In more remote endemic areas smaller volumes of infected blood are taken by finger prick, and dried and stored on filter paper. These dried blood spots do not generally yield enough concentrated parasite DNA for whole-genome sequencing.

Results

A DNA microarray was designed for use on field samples to type a genome-wide set of SNPs which prior sequencing had shown to be variable in Africa, Southeast Asia, and Papua New Guinea. An algorithm was designed to call SNPs in samples with low parasite DNA. With this new algorithm SNP-calling accuracy of 98% was measured by hybridizing purified DNA from malaria lab strains and comparing calls with SNPs called from full genome sequences. An average accuracy of >98% was likewise obtained for DNA extracted from malaria field samples collected in studies in Southeast Asia, with an average call rate of > 82%.

Conclusion

This new high-density microarray provided high quality SNP calls from a wide range of parasite DNA quantities, and represents a robust tool for genome-wide analysis of malaria parasites in diverse settings.  相似文献   

10.
A series of trisubstituted thiazoles have been identified as potent inhibitors of Plasmodium falciparum (Pf) cGMP-dependent protein kinase (PfPKG) through template hopping from known Eimeria PKG (EtPKG) inhibitors. The thiazole series has yielded compounds with improved potency, kinase selectivity and good in vitro ADME properties. These compounds could be useful tools in the development of new anti-malarial drugs in the fight against drug resistant malaria.  相似文献   

11.
Dihydroartemisinin (DHA) was coupled to different aminoquinoline moieties forming hybrids 9-14, which were then treated with oxalic acid to form oxalate salts (9a-14a). Compounds 9a, 10a, 12, 12a, and 14a showed comparable potency in vitro to that of chloroquine (CQ) against the chloroquine sensitive (CQS) strain, and were found to be more potent against the chloroquine resistant CQR strain. Hybrids 12 and its oxalate salt 12a were the most active against CQR strain, being 9- and 7-fold more active than CQ, respectively (17.12 nM; 20.76 nM vs 157.9 nM). An optimum chain length was identified having 2 or 3 Cs with or without an extra methylene substituent.  相似文献   

12.
The synthesis and antimalarial properties of twelve new chlorinated 9H-xanthones, carrying a [2-(diethylamino)ethyl]amino group in position 1, are reported. All compounds were found to be active towards the chloroquine-susceptible and chloroquine-resistant strains 3D7 and Dd2, resp., of the protozoa parasite Plasmodium falciparum. Especially one compound, 6-chloro-1-{[2-(diethylamino)ethyl]amino}-9H-xanthen-9-one (1k), was found to exhibit significant in vitro activity (IC50 = 3.9 microM) towards the resistant Dd2 strain.  相似文献   

13.
A rapid DNA-test, depending on the affinity based hybrid collection principle, was developed for the detection of Plasmodium falciparum DNA from clinical specimens. In this method, hybridization takes place in solution and the hybrids are collected onto a solid phase for measurement. Two probes are used, one labelled with an affinity tag (biotin) and the other with a detectable label (32P). In the present test a single oligonucleotide complementary to a 21-base pair sequence which is highly repeated in the parasite genome served both as capture and detector probe. The test is a 2-h hybridization performed in streptavidin coated microtitration plate wells, onto which the labelled hybrids simultaneously bind. The sensitivity of the assay with a crude erythrocyte lysate specimen was 1.6 x 10(9) repeat units corresponding to about 160 parasites in one microliter blood. The results allowed quantification of the repeat sequences and thus estimation of the degree of parasitemia in clinical specimens.  相似文献   

14.
Salvatore  Massimo  Francesco 《Phytochemistry》2009,70(9):1082-1091
N-Prenyl secondary metabolites (isopentenylazo-, geranylazo-, farnesylazo- and their biosynthetic derivatives) represent a family of extremely rare natural products. Only in recent years have these alkaloids been recognized as interesting and valuable biologically active secondary metabolites. To date about 35 alkaloids have been isolated from plants mainly belonging to the Rutaceae family, and from fungi, bacteria, and/or obtained by chemical synthesis. These metabolites comprise anthranilic acid derivatives, diazepinones, and indole, and xanthine alkaloids. Many of the isolated prenylazo secondary metabolites and their semisynthetic derivatives are shown to exert valuable in vitro and in vivo anti-cancer, anti-inflammatory, anti-bacterial, anti-viral, and anti-fungal effects. The aim of this comprehensive review is to examine the different types of prenylazo natural products from a chemical, phytochemical and biological perspective.  相似文献   

15.
The membrane potential of Plasmodium falciparum gametocytes was monitored with the cationic permeant fluorescent dye rhodamine 123 (R123) as a probe. Epifluorescence microscopy revealed that R123 at 1 microgram/ml rather selectively partitioned into structure resembling large mitochondria. Treatment of R123-loaded gametocytes with various inhibitors including those of respiration resulted in disappearance of fluorescence from what appeared to be the mitochondria, but not from the cytosol. These results indicate that P. falciparum gametocytes have the mitochondrion maintaining an inside negative membrane potential.  相似文献   

16.
Selected members of three classes of rhodacyanine dyes, [0, 0]-, [1, 0]-, and [0, 0, 0]-rhodacyanines, were synthesized and their in vitro antimalarial activities against Plasmodium falciparum K1 (chloroquine-resistant strain) as well as their in vivo activities against P. berghei in mice were determined. The novel [0, 0, 0]-rhodacynines, 3e and 3h, possessing a benzothiazole moiety, were shown to have highly promising antimalarial activities in vivo. Moreover, the [0, 0, 0]-rhodacyanines were found to be orally bioavailable.  相似文献   

17.
The research of innovative antimicrobial agents represents a cutting edge topic. Hence, we synthesized and characterised novel salicylanilide N-monosubstituted carbamates. Twenty compounds were evaluated in vitro against eight bacterial strains and eight fungal species. The lowest minimum inhibitory concentrations (MICs) were found to be ⩽0.49 μM. Genus Staphylococcus, including methicillin-resistant Staphylococcus aureus, and fungus Trichophyton mentagrophytes showed uniformly the highest rate of susceptibility, whilst Gram-negative bacteria and most of the fungi were less susceptible. A wide range of carbamates provided comparable or superior in vitro antimicrobial activity in comparison to established drugs. Interestingly, extended-spectrum β-lactamase producing strain of Klebsiella pneumoniae was inhibited with MICs starting from 31.25 μM. With respect to Staphylococci, 2-[(4-bromophenyl)carbamoyl]-4-chlorophenyl phenylcarbamate exhibited the lowest MIC values (⩽0.98 μM). 2-[(4-Bromophenyl)carbamoyl]-4-chlorophenyl benzylcarbamate showed the widest spectrum of antifungal action. The results indicate that some salicylanilide carbamates can be considered to be promising candidates for future investigation.  相似文献   

18.
Abstract In Manarintsoa, near Antananarivo, Madagascar, two groups of patients were defined in terms of malaria clinical immune status: Group MA+ consisted of 36 patients who suffered from between one to four malaria attacks (MA) during the 20-week study, and Group MA who comprised of 48 persons who did not have any malaria attacks during this time. In group MA+, IgM and IgG antibody levels to Plasmodium falciparum exoantigens (E-Ag) were inversely related to the number of malaria attacks. The level of IgM antibodies were significantly higher in group MA+. In contrast, IgG, IgG1, IgG2, IgG3 and IgG4 antibodies to E-Ag were significantly higher in group MA. The level of IgG1 antibodies was inversely correlated, and IgG2 antibodies were positively correlated to the number of malaria attacks.  相似文献   

19.
Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study.  相似文献   

20.
Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC50 in the μM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure–activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号