首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coordinated replication of eukaryotic nuclear genomes is asymmetric, with copying of a leading strand template preceding discontinuous copying of the lagging strand template. Replication is catalyzed by DNA polymerases α, δ and ?, enzymes that are related yet differ in physical and biochemical properties, including fidelity. Recent studies suggest that Pol ? is normally the primary leading strand replicase, whereas most synthesis by Pol δ occurs during lagging strand replication. New studies show that replication asymmetry can generate strand-specific genome instability resulting from biased deoxynucleotide pools and unrepaired ribonucleotides incorporated into DNA during replication, and that the eukaryotic replication machinery has evolved to most efficiently correct those replication errors that are made at the highest rates.  相似文献   

2.
In multicellular organisms, each cell contains the same DNA sequence, but with different epigenetic information that determines the cell specificity. Semi-conservative DNA replication faithfully copies the parental nucleotide sequence into two DNA daughter strands during each cell cycle. At the same time, epigenetic marks such as DNA methylation and histone modifications are either precisely transmitted to the daughter cells or dynamically changed during S-phase. Recent studies indicate that in each cell cycle, many DNA replication related proteins are involved in not only genomic but also epigenomic replication. Histone modification proteins, chromatin remodeling proteins, histone variants, and RNAs participate in the epigenomic replication during S-phase. As a consequence, epigenome replication is closely linked with DNA replication during S-phase.  相似文献   

3.
DNA replication   总被引:27,自引:0,他引:27  
  相似文献   

4.
DNA replication   总被引:14,自引:0,他引:14  
  相似文献   

5.
6.
7.
DNA replication   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
11.
12.
Bacteria that have a circular chromosome with a bidirectional DNA replication origin are thought to utilize a ‘replication fork trap’ to control termination of replication. The fork trap is an arrangement of replication pause sites that ensures that the two replication forks fuse within the terminus region of the chromosome, approximately opposite the origin on the circular map. However, the biological significance of the replication fork trap has been mysterious, as its inactivation has no obvious consequence. Here we review the research that led to the replication fork trap theory, and we aim to integrate several recent findings that contribute towards an understanding of the physiological roles of the replication fork trap. Likely roles include the prevention of over‐replication, and the optimization of post‐replicative mechanisms of chromosome segregation, such as that involving FtsK in Escherichia coli.  相似文献   

13.
14.
15.
We have studied the fate of blocked replication forks with the use of the Escherichia coli priA mutant, in which spontaneously arrested replication forks persist owing to the lack of the major replication restart pathway. Such blocked forks undergo a specific reaction named replication fork reversal, in which newly synthesized strands anneal to form a DNA double-strand end adjacent to a four-way junction. Indeed, (i) priA recB mutant chromosomes are linearized by a reaction that requires the presence of the Holliday junction resolvase RuvABC, and (ii) RuvABC-dependent linearization is prevented by the presence of RecBC. Replication fork reversal in a priA mutant occurs independently of the recombination proteins RecA and RecR. recBC inactivation does not affect priA mutant viability but prevents priA chronic SOS induction. We propose that, in the absence of PriA, RecBC action at reversed forks does not allow replication restart, which leads to the accumulation of SOS-inducing RecA filaments. Our results suggest that types of replication blockage that cause replication fork reversal occur spontaneously.  相似文献   

16.
17.
18.
19.
DNA replication fidelity plays fundamental role in faithful transmission of genetic material during cell division and during transfer of genetic material from parents to progeny. Replicative polymerases are the main guardian responsible for high replication fidelity of genomic DNA. DNA main replicative polymerases are also involved in many DNA repair processes. High fidelity of DNA replication is determined by correct nucleotide selectivity in polymerase active center, and exonucleolytic proofreading that removes mismatches from primer terminus. In this article we will focus on the mechanisms that are responsible for high fidelity of replications with the special emphasis on structural studies showing important conformational changes after substrate binding. We will also stress the importance of hydrogen bonding, base pair geometry, polymerase DNA interactions and the role of accessory proteins in replication fidelity.  相似文献   

20.
Parvovirus replication.   总被引:40,自引:1,他引:39       下载免费PDF全文
The members of the family Parvoviridae are among the smallest of the DNA viruses, with a linear single-stranded genome of about 5 kilobases. Currently the family is divided into three genera, two of which contain viruses of vertebrates and a third containing insect viruses. This review concentrates on the vertebrate viruses, with emphasis on recent advances in our insights into the molecular biology of viral replication. Traditionally the vertebrate viruses have been distinguished by the presence or absence of a requirement for a coinfection with a helper virus before productive infection can occur, hence the notion that the dependoviruses (adeno-associated viruses [AAV]) are defective. Recent data would suggest that not only is there a great deal of structural and genetic organizational similarity between the two types of vertebrate viruses, but also there is significant similarity in the molecular biology of productive replication. What differs is the physiological condition of the host cell that renders it permissive. Healthy dividing cells are permissive for productive replication by autonomous parvoviruses; such cells result in latent infection by dependoviruses. For a cell to become permissive for productive AAV replication, it must have been exposed to toxic conditions which activate a latent AAV genome. Such conditions can be caused by helper-virus infection or exposure to physical (UV light) or chemical (some carcinogens) agents. In this paper the molecular biology of replication is reviewed, with special emphasis on the role of the host and the consequences of viral infection for the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号