首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma amino acid patterns in hepatocellular carcinoma   总被引:3,自引:0,他引:3  
Plasma amino acid levels were determined in 23 patients in comparison with 16 normal subjects and 17 patients with liver cirrhosis. Patients with hepatocellular carcinoma had elevated levels of the aromatic amino acids and lowered levels of the branched-chain amino acids, as seen in liver cirrhosis; however, they had lowered levels of alanine and glutamine as compared with normal subjects and with liver cirrhosis patients. Following treatment with intraarterial chemotherapy and/or transcatheter arterial embolization, plasma levels of alanine and glutamine recovered. These results suggest that the consumption of alanine and glutamine increase in hepatocellular carcinoma.  相似文献   

2.
Glutamine transport by rat basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Glutamine, a neutral amino acid, is unlike most amino acids, has two amine moieties which underlies its importance as a nitrogen transporter and a carrier of ammonia from the periphery to visceral organs. The gastrointestinal tract utilizes glutamine as a respiratory substrate. The intestinal tract receives glutamine from the luminal side and from the arterial side through the basolateral membranes of the enterocyte. This study characterizes the transport of glutamine by basolateral membrane vesicles of the rat. Basolateral membranes were prepared by a well validated technique of separation on a percoll density gradient. Membrane preparations were enriched with Na+/K+-ATPase and showed no 'overshoot' phenomena with glucose under sodium-gradient conditions. Glutamine uptake represented transport into the intravesicular space as evident by an osmolality study. Glutamine uptake was temperature sensitive and driven by an inwardly directed sodium gradient as evident by transient accumulation of glutamine above the equilibrium values. Kinetics of glutamine uptake under both sodium and potassium gradients at glutamine concentrations between 0.01 and 0.6 mM showed saturable processes with Vmax of 0.39 +/- 0.008 and 0.34 +/- 0.05 nmol/mg protein per 15 s for both sodium-dependent and sodium-independent processes, respectively. Km values were 0.2 +/- 0.01 and 0.55 +/- 0.01 mM, respectively. pH optimum for glutamine uptake was 7.5. Imposition of negative membrane potential by valinomycin and anion substitution studies enhanced the sodium-dependent uptake of glutamine suggesting an electrogenic process, whereas the sodium-independent uptake was not enhanced suggesting an electroneutral process. Other neutral amino acids inhibited the initial uptake of glutamine under both sodium-dependent and sodium-independent conditions. We conclude that glutamine uptake by basolateral membranes occurs by carrier-mediated sodium-dependent and sodium-independent processes. Both processes exhibit saturation kinetics and are inhibited by neutral amino acids. The sodium-dependent pathway is electrogenic whereas the sodium-independent pathway is electroneutral.  相似文献   

3.
A cancer cell comprising largely of carbon, hydrogen, oxygen, phosphorus, nitrogen and sulfur requires not only glucose, which is avidly transported and converted to lactate by aerobic glycolysis or the Warburg effect, but also glutamine as a major substrate. Glutamine and essential amino acids, such as methionine, provide energy through the TCA cycle as well as nitrogen, sulfur and carbon skeletons for growing and proliferating cancer cells. The interplay between utilization of glutamine and glucose is likely to depend on the genetic make-up of a cancer cell. While the MYC oncogene induces both aerobic glycolysis and glutaminolysis, activated b-catenin induces glutamine synthesis in hepatocellular carcinoma. Cancer cells that have elevated glutamine synthetase can use glutamate and ammonia to synthesize glutamine and are hence not addicted to glutamine. As such, cancer cells have many degrees of freedom for re-programming cell metabolism, which with better understanding will result in novel therapeutic approaches.  相似文献   

4.
We have determined the complete nucleotide sequence of a 2.4 kb chromosomal EcoT22I-NspV fragment, containing the Bacillus cereus glnA gene (structural gene of glutamine synthetase). The deduced amino acid sequence indicates that the glutamine synthetase subunit consists of 444 amino acid residues (50,063 Da). Comparisons are made with reported amino acid sequences of glutamine synthetases from other bacteria. Upstrem of glnA we found an open reading frame of 129 codons (ORF129) preceded by the consensus sequence for a typical promoter. Maxicell experiments showed two polypeptide bands, with molecular weights in good agreement with that of glutamine synthetase and that of ORF129, in addition to vector-coded protein. It is possible that the product of this open reading frame upstream of glnA has a regulatory role in glutamine synthetase expression.  相似文献   

5.
The amino acid pools in Chinese hamster lung V79 cells were measured as a function of time during hyperthermic exposure at 40.5 degrees and 45.0 degrees C. Sixteen of the 20 protein amino acids were present in sufficient quantity to measure accurately. The total amino acid pool and all individual amino acids, except glutamine, remained relatively constant for at least 90 min at 40.5 degrees C and for 30 min at 45 degrees C. The glutamine pool decreased rapidly to 20% of its control value within 30 min at 40.5 degrees C with a T1/2 = 15 min. At 45 degrees C, the decrease was 36%. Thermotolerance developed at 40.5 degrees C with a T1/2 = 30 min; thus, glutamine depletion preceeds the development of thermotolerance. The depletion of glutamine is probably due to increased metabolism and oxidation of glutamine through the TCA cycle at hyperthermic temperatures. Glutamine, as is true for other amino acids, was shown to protect proteins from thermal inactivation and V79 cells from hyperthermic killing when added in excess (4-10 mM) to the medium during heat stress. However, the stability of the total amino acid pool during the development of thermotolerance indicates that resistance to heat does not result from the accumulation of amino acids which then protect against thermal damage. The effects of the large decrease in the glutamine pool are unknown, although glutamine depletion may act as a signal for part of the heat shock response.  相似文献   

6.
Metabolic flux analysis is a useful tool to analyze cell metabolism. In this study, we report the use of a metabolic model with 34 fluxes to study the 293 cell, in order to improve its growth capacity in a DMEM/F12 medium. A batch, fed-batch with glutamine feeding, fed-batch with essential amino acids, and finally a fed-batch experiment with both essential and nonessential amino acids were compared. The fed-batch with glutamine led to a maximum cell density of 2.4x10(6) cells/ml compared to 1.8x10(6) cells/ml achieved in a batch mode. In this fed-batch with glutamine, it was also found that 2.5 mM ammonia was produced compared to the batch which had a final ammonia concentration of 1 mM. Ammonia was found to be growth inhibiting for this cell line at a concentration starting at 1 mM. During the fed-batch with glutamine, the flux analysis shows that a majority of amino acid fluxes and Kreb's cycle fluxes, except for glutamine flux, are decreased. This observation led to the conclusion that the main nutrient used is glutamine and that during the batch there is an overflow in the Kreb's cycle. Thus, a fed-batch with glutamine permits a better utilization of this nutrient. A fed-batch with essential amino acid without glutamine was also assayed in order to reduce ammonia production. The maximum cell density was increased further to 3x10(6) cells/ml and ammonia production was reduced below 1 mM. Flux analysis shows that the cells could adapt to a medium with low glutamine by increasing the amino acid fluxes toward the Kreb's cycle. Adding nonessential amino acids during this feeding strategy did not improve growth further and the nonessential amino acids accumulated in the medium.  相似文献   

7.
Comparison of system N in fetal hepatocytes and in related cell lines   总被引:3,自引:0,他引:3  
In contrast to the changes seen in membrane transport systems for other neutral, anionic, and cationic amino acids, System N for glutamine, histidine, and asparagine in the rat hepatocytes shows nearly constant properties at the fetal, differentiated, and cultured hepatoma stages. These properties were tested by measuring the Na+-dependent transport of glutamine. This approximate constancy applies not only to the transport selectivity of the system among neutral amino acids, but also to its tolerance of Li+ as a substitute for Na+, its characteristic sensitivity to pH lowering, its relative sensitivity to N-ethylmaleimide, its stimulation by amino acid deprivation, and its failure to respond to insulin or glucagon. The properties of histidine as a substrate for System N were also examined. Inhibition studies with different cell types suggest that the Na+-dependent glutamine and histidine uptake is more restricted to System N in the hepatoma line H35 (H4-11-EC,3) and in the fetal hepatocyte than in hepatoma line HTC and the Ehrlich cells. The Na+-independent component of glutamine and histidine uptake was greater in the hepatoma cells in continuous culture than in fetal and adult hepatocytes in primary culture. Trans-stimulation of glutamine and histidine influx into H35 cells occurs predominantly by the Na+-independent route.  相似文献   

8.
The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of 466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA^+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.  相似文献   

9.
谷氨酰胺营养生理研究进展   总被引:15,自引:2,他引:13  
谷氨酰胺因其对人和动物中的重要生理作用而引起了广泛关注。谷氨酰氨是一种特殊的氨基酸,为快速繁殖细胞优先选择的呼吸燃料,如粘膜细胞和淋巴细胞;调节体内酸碱平衡;组织间氮的载体;核酸、核苷酸、氨基糖和蛋白质的重要前体。大量的证据表明谷氨酰胺是一种条件性必需氨基酸。在应激状况下,机体对谷氨酰胺的需要超过其合成能力,因此,可以通过肠外营养或饲料中添加谷氨酰胺以营养调控的方式加速动物体的康复。  相似文献   

10.
It is generally accepted that the phase of cell decline observed in batch culture of mammalian cells is related to exhaustion of medium nutrients (principally glucose and glutamine) and/or to waste products accumulation. In the present paper, we have studied the influence of glutamine on the proliferation of mouse hybridoma cells. We showed that repeated addition of glutamine prolonged the life span of the culture and significantly increased the secretion of monoclonal antibody. Flow cytometry analysis suggests that this effect of glutamine is related to a delay in cell death rather than to a stimulation of proliferation.Addition of glutamine and glucose failed however to prevent the death of the culture. Determinations of amino acid consumption in glutamine-supplemented samples and experiments carried out with complementary sources of amino acids (e.g. tryptose phosphate) strongly suggest that amino acid supply is a critical factor governing cell growth and productivity.  相似文献   

11.
Batch and continuous cultures were carried out to study the stoichiometry, kinetics, and regulation of glucose and amino acid metabolism of a recombinant BHK cell line, with particular attention to the metabolism at low levels of glucose and glutamine. The apparent yields of cells on glucose and glutamine, lactate on glucose, and ammonium on glutamine were all found to change significantly at low residual concentrations of glucose (<5 mmol/L) and glutamine (<1 mmol/L) . The uptake rates of glucose and glutamine were markedly reduced at low concentrations, leading to a more effective utilization of these nutrients for energy metabolism and biosynthesis and reduced formation rates of lactate and ammonium. However, the consumption of other amino acids, especially the essential amino acids leucine, isoleucine, and valine and the nonessential amino acids serine and glutamate, was strongly enhanced at low glutamine concentration. Quantitatively, it was shown that the cellular yields and rates associated with glucose metabolism were primarily determined by the residual glucose concentration, while those associated with glutamine metabolism depended mainly on the residual glutamine. Both experimental results and analysis of the kinetic data with models showed that the glucose metabolism of BHK cells is not affected by glutamine except for a slight influence under glucose limitation and glutaminolysis not by glucose, at least not significantly under the experimental conditions. Compared to hybridoma and other cultured animal cells, the recombinant BHK cell line showed remarkable differences in terms of nutrient sensitivity, stoichiometry, and amino acid metabolism at low levels of nutrients. These cell-line-specific stoichiometry and nutrient needs should be considered when designing an optimal medium and/or feeding strategy for achieving high cell density and high productivity of BHK cells. In this work, a cell density of 1.1 × 107 cells/mL was achieved in a conventional continuous culture by using a proper feed medium.  相似文献   

12.
On treatment with collagenase, brain microvessels, together with several protein components, lose some enzymatic activities such as alkaline phosphatase and gamma-glutamyltranspeptidase, whereas no change occurs in the activities of 5'-nucleotidase and glutamine synthetase. The energy-requiring "A-system" of polar neutral amino acid transport is also severely inactivated, whereas the L-system for the facilitated exchange of branched chain and aromatic amino acids is preserved. In the collagenase-digested microvessels, this leads to loss of the transtimulation effect of glutamine on the transport of large neutral amino acids, because such transtimulation is due to a cooperation between the A- and L-systems. By contrast, NH4+ maintains (and even enhances) its ability to stimulate the L-system of amino acid transport, presumably through glutamine synthesis within the endothelial cells.  相似文献   

13.
Glutamate and related amino acids were determined in 53 discrete brain areas of 3-and 29-month-old male Fischer 344 rats microdissected with the punch technique. The levels of amino acids showed high regional variation-the ratio of the highest to lowest level was 9 for aspartate, 5 for glutamate, 6 for glutamine, and 21 for GABA. Several areas were found to have all four amino acids at very high or at very low level, but also some areas had some amino acids at high, others at low level. With age, in more than half of the areas, significant changes could be observed, decrease occurred 5 times more frequently than increase. Changes occurred more often in levels of aspartate and GABA than in those of glutamate or glutamine. The regional levels of glutamate and its related amino acids show severalfold variations, with the levels tending to decrease in the aged brain.  相似文献   

14.
When rice seedling roots were fed 15N-ammonium for 1 hr, theamide nitrogen of glutamine showed the highest 15N abundance.Moreover, glutamine amino, glutamic acid, aspartic acid andalanine showed higher 15N abundance than ammonium did. In roots whose GS activity was inhibited with MS, both the amountof ammonium and its 15N abundance were increased. In contrast,both the amount of all examined amino acids containing glutamicacid and their 15N abundance decreased in roots whose GS activitywas inhibited. From these results, it could be concluded thatthe first step of ammonium assimilation in rice seedling rootswas mainly glutamine synthesis by GS and the second was glutamicacid formation by the GOGAT system. The results of an experiment using 15N glutamine also supportedthis conclusion. (Received February 23, 1977; )  相似文献   

15.
Effect of glutamine and its metabolites (amino acids) on Chlorella glutamine synthetase (GS) (E.C.6.3.1.2) in the presence of Mg or Mn was studied. Purified GS preparation was used, isolated from Chlorella grown in the presence of NH as a sole nitrogen source. Glutamate, aspartate, alanine and glycine inhibit GS activity in the presence of both Mg and Mn. Tryptophane and valine (up to 15 mM) activate GS in the presence of Mn. Tryptophane inhibits GS in the system with Mg. Sinergistic inhibition was observed under the combined effect of amino acids on GS in the presence of Mn and aspartate or alanine. The change of GS activity observed is supposed to be due to the inhibitory effect of glutamine and amino acids studied, since the glutamine content is increased (in 2.5 times for 5 min) and that of alanine and dicarbonic amino acids (for the following 15 min) under NH assimilation in Chlorella cells.  相似文献   

16.
A yeast DNA fragment carrying the gene CP A1 encoding the small subunit of the arginine pathway carbamoyl-phosphate synthetase has been sequenced. Only one continuous coding sequence on this fragment was long enough to account for the presumed molecular mass of CP A1 protein product. It codes for a polypeptide of 411 amino acids having a relative molecular mass, Mr, of 45 358 and showing extensive homology with the product of carA, the homologous Escherichia coli gene. CP A1 and carA products are glutamine amidotransferases which bind glutamine and transfer its amide group to the large subunits where it is used for the synthesis of carbamoyl-phosphate. A comparison of the amino acid sequences of CP A1 polypeptide with the glutamine amidotransferase domains of anthranilate and p-amino-benzoate synthetases from various sources has revealed the presence in each of these sequences of three highly conserved regions of 8, 11 and 6 amino acids respectively. The 11-residue oligopeptide contains a cysteine which is considered as the active-site residue involved in the binding of glutamine. The distances (number of amino acid residues) which separate these homology regions are accurately conserved in these various enzymes. These observations provide support for the hypothesis that these synthetases have arisen by the combination of a common ancestral glutamine amidotransferase subunit with distinct ammonia-dependent synthetases. Little homology was detected with the amide transfer domain of glutamine phosphoribosyldiphosphate amidotransferase which may be the result of a convergent evolutionary process. The flanking regions of gene CP A1 have been sequenced, 803 base pairs being determined on the 5' side and 382 on the 3' side. Several features of the 5'-upstream region of CP A1 potentially related to the control of its expression have been noticed including the presence of two copies of the consensus sequence d(T-G-A-C-T-C) previously identified in several genes subject to the general control of amino acid biosynthesis.  相似文献   

17.
Abstract The uptake of arginine and proline and their assimilation as nitrogen source have been studied in the cyanobacterium Anabaena cycadeae and its glutamine auxotropic mutant lacking glutamine synthetase activity. The uptake pattern of arginine and proline was found to be biphasic in both wild-type and mutant strains, consisting of an initial fast phase lasting up to 60 s followed by a slower second phase. The uptake activities of both the amino acids were also found to be similar in both the strains. The wild-type strain, having normal glutamine synthetase activity, utilized arginine and proline as sole nitrogen source, whereas the mutant strain lacking glutamine synthetase activity could not do so. These results suggest that: (1) glutamine synthetase activity is necessarily required for the assimilation of arginine and proline as nitrogen source, but it is not required for the uptake of these amino acids; and (2) glutamine synthetase serves as the sole ammonia-assimilating enzyme as well as glutamine-forming route in heterocystous cyanobacteria.  相似文献   

18.
Glutamine is considered a nonessential amino acid; however, it becomes conditionally essential during critical illness when consumption exceeds production. Glutamine may modulate the heat shock/stress response, an important adaptive cellular response for survival. Glutamine increases heat induction of heat shock protein (Hsp) 25 in both intestinal epithelial cells (IEC-18) and mesenchymal NIH/3T3 cells, an effect that is neither glucose nor serum dependent. Neither arginine, histidine, proline, leucine, asparagine, nor tyrosine acts as physiological substitutes for glutamine for heat induction of Hsp25. The lack of effect of these amino acids was not caused by deficient transport, although some amino acids, including glutamate (a major direct metabolite of glutamine), were transported poorly by IEC-18 cells. Glutamate uptake could be augmented in a concentration- and time-dependent manner by increasing either media concentration and/or duration of exposure. Under these conditions, glutamate promoted heat induction of Hsp25, albeit not as efficiently as glutamine. Further evidence for the role of glutamine conversion to glutamate was obtained with the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON), which inhibited the effect of glutamine on heat-induced Hsp25. DON inhibited phosphate-dependent glutaminase by 75% after 3 h, decreasing cell glutamate. Increased glutamine/glutamate conversion to glutathione was not involved, since the glutathione synthesis inhibitor, buthionine sulfoximine, did not block glutamine’s effect on heat induction of Hsp25. A large drop in ATP levels did not appear to account for the diminished Hsp25 induction during glutamine deficiency. In summary, glutamine is an important amino acid, and its requirement for heat-induced Hsp25 supports a role for glutamine supplementation to optimize cellular responses to pathophysiological stress. IEC-18; NIH/3T3; glutaminase; 6-diazo-5-oxo-L-norleucine; glutathione  相似文献   

19.
Five amino acids are accumulated during vegetative growth of Neurospora crassa, particularly.during the prestationary growth phase. Alanine, glutamine, glutamate, arginine and ornithine.comprised over 80% of the total amino acid pool in the mycelium. Amino acid pools of different amino acid auxotrophs were followed during the partial transformation of a mycelial mat into an aerial mycelium. The mycelial mat under starvation and in direct contact with air rapidly formed aerial mycelium, which produced thereafter a burst of conidia. During this process,glutamine and alanine in the mycelial mat were consumed more rapidly than other amino acids;in the growing aerial mycelium, glutamate and glutamine were particularly accumulated. Of the amino acids that were initially accumulated in the mycelial mat, only a high glutamine pool was required for aerial mycelium growth induced by starvation. This requirement for glutamine could not be satisfied by a mixture of the amino compounds that are synthesized via glutamine amidotransferase reactions. It is proposed that glutamine serves as a nitrogen carrier from the mycelial mat to the growing aerial mycelium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号