首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcareous nannofossil quantitative and biostratigraphic analyses integrated with carbon and oxygen stable isotopes were carried out on the core ANDRA (Agence Nationale pour la gestion des Déchets Radio-Actifs—FRANCE) HTM 102 across the Callovian/Oxfordian boundary drilled at Cirfontaines-en-Ornois, Départment de Haute-Marne, eastern France. Calcareous nannofossil assemblages at the Callovian–Oxfordian transition are dominated by the genus Watznaueria. An increase in abundance of Biscutum spp. and A-group, which consists of Axopodorhabdus spp. (A. atavus, A. rahla, and A. cylindratus), Podorhabdus grassei, Octopodorhabdus decussatus, Hexapodorhabdus cuvillieri (family Axopodorhabdaceae), and Triscutum spp., correlates with a significant positive excursion in δ18O suggesting that these groups were probably adapted to cooler surface waters. A positive increase in δ13C values is coupled with high abundances of eutrophic taxa such as Zeughrabdotus erectus, Biscutum spp., and small-sized Watznaueria britannica, and a decrease in abundance of the big and oligotrophic taxa Schizosphaerella punctulata and Watznaueria manivitae. Climate cooling across the Callovian/Oxfordian boundary probably triggered a breakdown in stratification of surface waters leading to more intense nutrient recycling and higher primary productivity that favoured the shift in abundance of small-sized eutrophic taxa in the East Paris Basin.  相似文献   

2.
《Marine Micropaleontology》2006,60(3):205-225
The coccolithophore species Watznaueria britannica is dominant in Middle-Upper Jurassic calcareous nannofossil assemblages and presents morphological variation, including different coccolith size, shape and length of the central area and of the bridge. Six morphotypes can be recognized in the polarizing light microscope. The aim of this work is to better understand the morphological variability of W. britannica and determine if this variability is controlled by paleoecological factors. In order to investigate the potential paleoecological controls on W. britannica morphology and abundance, we carried out a biometric study on a restricted temporal interval: the Late Oxfordian, in the Swabian Alb (southern Germany), characterized by increasing carbonate production linked to climatic changes. The Balingen–Tieringen section, where previous works on sedimentology, nannofossil assemblage composition, and δ18O and δ13C analyses were performed, was selected for this study. The variations in morphology and abundances of W. britannica were studied on 40 samples of the Balingen–Tieringen section, presenting variable lithologies and calcium carbonate contents. For each level, seven biometric parameters (coccolith length, width and ellipticity, central area length, width and ellipticity and central area proportion with respect to the coccolith) were measured or calculated on digitally captured images of the first 100 W. britannica coccoliths observed in the light microscope. The relationships between the different biometric variables were described using bivariate and Principal Component Analyses. Biometric parameters and Principal Component factors extracted from nannofossil assemblages as well as other paleoenvironmental proxies, were investigated using regression, and their stratigraphic trends were compared. Principal component analysis of the six biometric variables (3938 measurements) on W. britannica coccoliths shows a reduced morphological variability compared to a significant size gradient. An allometric trend recognized on the total placolith and on the central area within the W. britannica assemblages suggests that the different morphotypes may represent intra-specific variability rather than different species. The general trend through Late Oxfordian shows an increase in size of W. britannica coccoliths, mainly driven by an increase in the contribution of the large morphotypes. Increasing placolith size is associated with drier and warmer climatic conditions during the latest Oxfordian.  相似文献   

3.
The distribution pattern of calcareous nannofossils was analysed across the Middle-Late Jurassic transition in the French Subalpine Basin (south-eastern France). This basin is characterized in the hemipelagic-pelagic domain by a continuous sedimentary succession, allowing a good biostratigraphic resolution for this time interval. The nannofossil assemblages are consistently dominated by Watznaueria britannica. However, major changes in trophic and paleoenvironmental conditions are recorded across the Middle-Late Jurassic transition. An increase in marine primary productivity and cooling of surface waters is recorded across the Callovian-Oxfordian boundary, as already shown in the higher latitude setting of the eastern Paris Basin. Increased precipitation and runoff under contrasting seasonal climatic conditions (monsoon-type) has led to eutrophication of marine surface waters in the French Subalpine Basin at this period. Then, decreased runoff and associated nutrients certainly linked to drier climatic conditions lead to a decrease in calcareous nannofossil productivity during the middle part of the Early Oxfordian (mariae-cordatum ammonite Zone transition). At the Early-Middle Oxfordian transition, more favourable conditions for the nannofossil community (warmer and mesotrophic surface waters) prevailed. The pelagic (nannofossil) carbonate contribution is limited, and the carbonate fraction is predominantly of nektonic/benthic origin at the Callovian-Oxfordian transition and of allochthonous origin from carbonate platforms at the Early Oxfordian-Middle Oxfordian transition.  相似文献   

4.
In Aalenian times, the South Iberian Palaeomargin was part of the westernmost Tethys Ocean. The Median Subbetic palaeogeographic domain of the Betic Cordillera was a relatively deep trough in the South Iberian Palaeomargin during the Early Jurassic–Late Cretaceous interval, where mainly pelagic and hemipelagic limestones and marls were deposited. A semiquantitative study of nannofossil assemblages was performed in sediments from the upper Toarcian–lowest Bajocian from two Median Subbetic sections (Agua Larga and Cerro de Mahoma). Nannofossil assemblages are composed mainly of cosmopolitan and Tethyan taxa. The NJ8a, NJ8b and NJ9 Zones as well as other useful biohorizons (FOs of Triscutum tiziense and Carinolithus magharensis and LO of Similiscutum finchii) were identified and directly correlated to ammonite zones. The analysis of the relative abundances of some common to abundant taxa including Biscutum, Carinolithus superbus, Crepidolithus crassus, Lotharingius, Schizosphaerella and Watznaueria display noticeable fluctuations that can be correlated between the two sections. The comparison of these fluctuations with the δ13Ccarb curves and the interpretation of the palaeoecologic significance of some of these taxa provided an outline of the palaeoceanographic trophic regime throughout the interval studied. During the latest Toarcian–Early Aalenian, the high proportions of oligotrophic Schizosphaerella, moderately high proportions of C. crassus and low proportions of eutrophic Biscutum, correlate with low to moderate values in the δ13Ccarb curves. Radiolarians display low abundance throughout this interval. This is interpreted as an interval where mesotrophic to oligotrophic and stable conditions occurred in surface waters. The Middle Aalenian, characterized by high proportions of Schizosphaerella and C. crassus and low proportions of Biscutum, correlates with low values in the δ13Ccarb curves, and was interpreted to correspond to an episode when stable oligotrophic conditions occurred in surface waters. Radiolarians moderately increased throughout this interval. Finally, the Late Aalenian–earliest Bajocian interval, with lower proportions of Schizosphaerella and C. crassus, and higher proportions of Biscutum, also correlates with a significant positive excursion in the δ13Ccarb curve, suggesting a shift from oligo- to eutrophic conditions in surface waters. This change in productivity is also revealed by a conspicuous increase in radiolarian abundance, at the same time as a quasi-complete replacement of Early Jurassic radiolarian fauna took place. The analysis of faunal-flora turnovers reveals a causal link between the global carbon-cycle and the pelagic response. This noticeable faunal-flora change throughout the Late Aalenian–Bajocian can be interpreted as a major biological response to the drastic modification in the western Tethys palaeogeography as consequence of the Atlantic opening, which in turn caused a new pattern in the oceanic circulation.  相似文献   

5.
In the present study, we document paleoenvironmental change across the Danian–Selandian transition (planktic foraminiferal interval P2–P3b; calcareous nannofossil Zone NP4, Subzones NTp6–NTp8A; 61–59 Ma) in NW Tunisia. Diversifications of Paleogene planktic foraminifera with the evolution of the muricate and photosymbiotic lineages Morozovella, Acarinina and Igorina and of the biostratigraphically important nannofossils genus Fasciculithus are recorded within this interval. The present study aims to understand early Paleogene environmental changes in the southern Tethys, by analyzing the evolution of surface-water and–to a lesser extent–seafloor conditions. Three localities were investigated: Ain Settara, Elles and El Kef, all representing outer neritic deposition in the same basin, the Tunisian Trough. Paleoenvironmental changes are explored by combining planktic foraminiferal, organic dinocyst and calcareous nannofossils assemblages and several proxy parameters (planktic/benthic ratio, numbers of planktic foraminifera per gram, peridinioid/gonyaulacoid ratio; terrestrial/marine palynomorph ratio). In addition, also some geochemical parameters (calcite content and stable isotopes) are examined. Our records indicate that the environment evolved from an initially oligotrophic, open marine, deep outer neritic setting in P2–P3a towards a shallower and nutrient-rich setting from the base of Subzone P3b. This change is seen in the foraminiferal assemblages, with the substitution of Praemurica by Morozovella among the planktic foraminifera and an upward decrease in deeper benthic taxa. Also the organic-dinocyst assemblages show a peak of peridinioid cysts (Cerodinium and Lejeunecysta). Associated to these dinocyst assemblages, the lowest occurrence of Apectodinium is recorded, which seem to have evolved in this region, possibly in response to enhanced nutrient levels on the shelf. Additionally, a distinct change in calcareous nannofossil assemblages is also described, marked by the lowest appearance of Chiasmolithus edentulus, the lowest consistent occurrence of Fasciculithus and a slight increase in near-shore taxa (essentially Pontosphaera).This project provides an accurate understanding of paleoenvironmental change across the Danian–Selandian transition in Tunisia. Especially, integrating different proxies demonstrates a paleobathymetric shallowing from the Danian to the Selandian, associated to increase surface paleoproductivity. Furthermore, the results are compared with those from other localities along the Southern Tethyan margin (Egypt and Jordan) and a more regional paleoclimatic/paleoceanographic perturbation in the Southern Tethys is suggested.  相似文献   

6.
Seabirds can shunt nutrients and contaminants from marine to terrestrial ecosystems by forming dense breeding colonies and releasing wastes to these sites. A large colony of seabirds at Cape Vera (Devon Island, High Arctic Canada) has resulted in eutrophic conditions and potentially toxic concentrations of sedimentary metals in several freshwater ponds that drain their nesting sites. Here, we investigated the effects of elevated nutrient and sedimentary metal concentrations on the distribution of subfossil chironomids in surface sediments from 21 ponds that span a gradient of seabird influence. Although many ponds registered high nutrient concentrations (e.g., mean TP = 45 μg l −1), eutrophic taxa typical of temperate waters were not common, with most assemblages being dominated by morphotypes of Psectrocladius and Tanytarsina, as well as Corynoneura arctica-type, and Metriocnemus hygropetricus-type. Although the ponds within and outside the area influenced by seabirds contained largely similar taxa, variations did exist in the relative abundances of the different species. Lakewater pH was the only measured environmental variable that explained statistically significant amounts of variation in the chironomid assemblages. Although direct effects of pH on chironomids cannot be ruled out, pH is likely tracking production-related changes driven by limnetic dissolved inorganic carbon dynamics. Sediment cores collected from seabird-affected and seabird-free ponds showed a greater number of chironomid taxa and higher head capsule abundances in the pond receiving seabird inputs. Chironomid assemblages in both cores recorded increased abundances in recent decades, likely in response to warmer conditions and lengthened growing seasons.  相似文献   

7.
In this study we present the results of a detailed analysis on calcareous nannofossil assemblages from sediment cores of ODP Site 1263 (Southern East Atlantic, Walvis Ridge). This section represents one of the few complete deep-sea sections that document the Paleocene–Eocene Thermal Maximum (PETM) in the pelagic realm. The PETM transient event was characterized by a brief, but intense interval of global warming, a global negative carbon isotope excursion (CIE), and widespread dissolution of seafloor carbonate sediments. Paired analysis at polarizing light microscope (LM) and Scanning Electron Microscope (SEM) documents the different “behavior” of nannofossils through the different phases of the PETM, at the onset of CIE, within the CIE, and during the recovery interval. The presence of anomalous specimens and morphotypes within some nannofossil taxa, recorded during previous LM high resolution analyses, has been further investigated in selected samples at the SEM. Besides the known representatives of the CIE-PETM “excursion nanno-flora”, as Rhomboaster calcitrapa group and Discoaster anartios, the analysis revealed the presence of peculiar morphotypes of Fasciculithus and deformed specimens of Discoaster nobilis group, Discoaster mediosus and Discoaster multiradiatus that are considered related to the anomalous amount of CO2 in the ocean-atmosphere system during the early phase of PETM. Comparative analyses were performed in few selected samples from other PETM sections located at different latitudes in the Atlantic and Pacific oceans. Although the anomalous geochemical conditions during the PETM-CIE interval seem to have had some influence on the nannofossil production, calcification and assemblage composition, it results that local productivity together with post depositional (diagenetic) conditions were additional important controlling factors on nannofossil assemblages. Preliminary data from Eocene Thermal Maximum 2 (ETM2 or Elmo) suggest that nannofossil malformations are not exclusive of the PETM, and are associated to other episodes of perturbation of the C cycle.  相似文献   

8.
Compositions and abundances of calcareous nannofossil taxa have been determined in a ca 170 kyrs long time interval across the Paleocene/Eocene boundary at 1-cm to 10-cm resolution from two ODP Sites (1262, 1263) drilled along the flank of the Walvis Ridge in the South Atlantic. The results are compared to published data from ODP Site 690 in the Weddell Sea. The assemblages underwent rapid evolution over a 74 kyrs period, indicating stressed, unstable and/or extreme photic zone environments during the PETM hyperthermal. This rapid evolution, which created 5 distinct stratigraphic horizons, is consistent with the restricted brief occurrences of malformed and/or weakly calcified morphotypes. The production of these aberrant morphotypes is possibly caused by major global scale changes in carbon cycling in the ocean–atmosphere system, affecting also photic zone environments. No marked paleoecologically induced changes are observed in abundances of the genera Discoaster, Fasciculithus and Sphenolithus at the Walvis Ridge sites. Surprisingly, there is no significant correlation in abundance between these three genera, presumed to have had a similar paleoecological preference for warm and oligotrophic conditions.  相似文献   

9.
Abundant and diverse calcareous nannofossil assemblages were found in organic-rich carbonate sequences which accumulated in a Campanian-Maastrichtian upwelling belt along the southeastern Tethys. The sequences studied represent the inner (shallower) and the outer (deeper) parts of the upwelling belt. The paleoenvironmental significance of selected nannofossil taxa and their utility in productivity reconstruction was established by comparing their distribution to foraminifera and dinocyst-based productivity profiles.Based on the calcareous nannofossil assemblages, a high-productivity group and a low-productivity group of species were determined. The distribution of these groups agrees well with the dinocyst- and foraminifera-based productivity curves and, hence, can be used to record paleoproductivity changes.The ratio between the high-productivity and low-productivity nannofossil groups, the Nannofossil Index of Productivity (NIP), is proposed here as a productivity proxy that can be utilized in reconstructing basinal productivity development.A quantitative analysis of the nannofossil assemblages indicates that their abundance and diversity increase towards the open sea, in the outer and less productive part of the upwelling belt. In the inner and more productive part of the upwelling belt, the nannofossils assemblages become less abundant and less diverse relative to those of the open marine environment.Micula decussata and Watznaueria barnesae are common to abundant in most samples. M. decussata becomes more abundant in poorly-preserved samples. On the other hand, the distribution of W. barnesae matches better with intermediate productivity levels.  相似文献   

10.
The latest Cretaceous (Campanian–Maastrichtian) is characterized by several global cooling and intermittent warming events. These climatic changes influenced the palaeoceanography substantially, including changes of the deep water sources and surface water currents. One of the most prominent episodes of climatic cooling occurred during the Campanian–Maastrichtian transition. This study focuses on the palaeoclimate and palaeoceanography of the Campanian–Maastrichtian transition by analysing the calcareous nannofossils of DSDP Hole 390A (139.92–126.15 mbsf; Blake Nose). For the examination of calcareous nannofossils sixty samples were processed using the settling technique. Biostratigraphical index taxa (Broinsonia parca constricta, Uniplanarius trifidus, and Tranolithus orionatus) suggest a late Campanian age for the major part of the studied section. The calcareous nannofossils are well preserved, highly abundant (6.80 billion specimens/gram sediment) and diverse (80 species/sample). The assemblages are dominated by Prediscosphaera spp. (20.5%), Watznaueria spp. (20.3%) and Retecapsa spp. (9.8%). Cool water taxa (Ahmuellerella octoradiata, Gartnerago segmentatum, and Kamptnerius magnificus), however, appear less frequently and do not exceed more than 1%. Due to their rarity these cool water taxa do not support the existence of an intense cooling phase during the Campanian–Maastrichtian transition at DSDP Hole 390A. Around 133 mbsf several nannofossil taxa, however, show a distinctive turnover. Mesotrophic species like Discorhabdus ignotus, Zeugrhabdotus bicrescenticus and Zygodiscus exmouthiensis are abundant below 133 mbsf, whereas oligotrophic taxa like Watznaueria spp., Eiffellithus spp. and Staurolithites flavus become common above this level. These changes imply a decrease in the input of nutrients, perhaps caused by a reorganization of ocean currents (Palaeo Gulf Stream) and reduced upwelling.  相似文献   

11.
High-resolution biostratigraphic and quantitative studies of subtropical Pacific planktonic foraminiferal assemblages (Ocean Drilling Program, Leg 198 Shatsky Rise, Sites 1209 and 1210) are performed to analyse the faunal changes associated with the Paleocene–Eocene Thermal Maximum (PETM) at about 55.5 Ma. At Shatsky Rise, the onset of the PETM is marked by the abrupt onset of a negative carbon isotope excursion close to the contact between carbonate-rich ooze and overlying clay-rich ooze and corresponds to a level of poor foraminiferal preservation as a result of carbonate dissolution. Lithology, planktonic foraminiferal distribution and abundances, calcareous plankton and benthic events, and the negative carbon isotope excursion allow precise correlation of the two Shatsky Rise records. Results from quantitative analyses show that Morozovella dominates the assemblages and that its maximum relative abundance is coincident with the lowest δ13C values, whereas subbotinids are absent in the interval of maximum abundance of Morozovella. The excursion taxa (Acarinina africana, Acarinina sibaiyaensis, and Morozovella allisonensis) first appear at the base of the event. Comparison between the absolute abundances of whole specimens and fragments of genera demonstrate that the increase in absolute abundance of Morozovella and the decrease of Subbotina are not an artifact of selective dissolution. Moreover, the shell fragmentation data reveal Subbotina to be the more dissolution-susceptible taxon. The upward decrease in abundance of Morozovella species and the concomitant increase in test size of Morozovella velascoensis are not controlled by dissolution. These changes could be attributed to the species' response to low nutrient supply in the surface waters and to concomitant changes in the physical and chemical properties of the seawater, including increased surface stratification and salinity.Comparison of the planktonic foraminiferal changes at Shatsky Rise to those from other PETM records (Sites 865 and 690) highlights significant similarities, such as the decline of Subbotina at the onset of the event, and discrepancies, including the difference in abundance of the excursion taxa. The observed planktonic foraminifera species response suggests a warm–oligotrophic scenario with a high degree of complexity in the ocean structure.  相似文献   

12.
13.
Quantitative analyses of Pliensbachian calcareous nannofossils have been carried out on a proximal-distal transect in the Lusitanian Basin (Portugal). The studied sections Vale Venteiro near Tomar and Peniche represent proximal and distal environments with respect to the emerged land of the Iberian Meseta (to the East). The upper portion of the Vale das Fontes Fm (Davoei and Margaritatus ammonite Zones) is studied in both sections and correlated by means of ammonite and nannofossil integrated biostratigraphy. A careful analysis of the preservation state of nannofossils is performed. Preservation state is moderate to good in the two settings; changes in nannofossil assemblages are therefore considered as primary. Samples were analysed for nannofossil absolute and relative abundances, species diversity and wt%CaCO3. The analysis of calcareous nannofossils (absolute abundance, percentage, average abundance) shows changes in the community structure in space (i.e., from proximal to distal), and vertically within the water column. This pattern suggests a partitioning of habitats within the photic zone, and with respect to emerged lands. Proximal environments within the Lusitanian Basin were probably more eutrophic, because of the proximity of emerged lands to the East (Iberian Meseta). This was the source area for nutrients delivered into the basin by river transport. Distal environments were likely characterized by a greater water depth and by a deeper light penetration leading to a relatively more expanded photic zone. The assemblages recorded in the proximal setting exhibit high mean relative abundance of placolith-bearing coccolithophorids (Lotharingius spp., Biscutum spp. and Similiscutum spp.) and of Schizosphaerella spp., while distal assemblages are dominated by Crepidolithus crassus and Schizospharella spp. Crepidolithus crassus is interpreted as a deep-dweller coccolithophorid, inhabiting preferentially distal and deeper settings in the Lusitanian Basin. Placolith-bearing coccolithophorids were more abundant in proximal settings with respect to emerged lands, under relatively elevated trophic conditions. The probable calcareous dinocyst Schizospharella spp. proliferated in surface waters of both proximal and distal environments.  相似文献   

14.
In order to assess Early Cretaceous nannoplankton biogeography, we studied a series of sites which provide a north–south transect across the Atlantic Ocean, supplemented by sections from the North Sea Basin, Barents Sea, Falkland Plateau, Weddell Sea (Antarctica), Argo Abyssal Plain (NW of Australia) and Neuquén Basin (Argentina). Quantitative assemblage data were gathered from each site for seven time-slices within the Berriasian to Barremian interval, each horizon being determined by a nannofossil datum. Trends in species relative abundance and measures of diversity, evenness and richness provide revealing biogeographic information. A broad, low- to mid-palaeolatitude zone (50°N–50°S) is flanked in both Northern and Southern Hemispheres by distinct high-palaeolatitude zones. Major changes in assemblage abundance and composition occur across a sharp biogeographic ‘front’ at around 50°N and S palaeolatitude. High-palaeolatitude assemblages are lower in species richness and diversity and characterised by the presence of abundant, typically bipolar, taxa (e.g. Crucibiscutum salebrosum). A less distinct biogeographic boundary at 40°N is distinguished by the presence/absence of rarer, but biogeographically significant, taxa, many of which have previously been assigned to Boreal or Tethyan provinces. Continental shelf sites are characterised by lower-diversity assemblages with common to dominant diagnostic taxa, which vary with palaeolatitude: Nannoconus and Micrantholithus at low palaeolatitudes, and Biscutum constans and Zeugrhabdotus spp. at higher palaeolatitudes. The latter two taxa are considered to be indicative of elevated surface-water fertility and the former two may have been similarly adapted. The genus Watznoueria is ubiquitously dominant, giving the populations an unevenness, which appears to be a common feature throughout coccolithophore history.  相似文献   

15.
This paper presents a detailed calcareous nannofossil biostratigraphy of the entire Lutetian of the Agost section (Betic Cordillera, SE Spain). This investigation integrates and improves on previous study performed through the Ypresian/Lutetian boundary by the authors on this succession. The new revision of the integrated bio‐magnetobiochronology of the Early/Middle Eocene interval revealed highly diversified calcareous nannofossil assemblages, characterizing more than 8 Myr of climatic variability. The studied interval spans from Zone CP11 to Subzone CP14a and from the upper part of Zone NP13 to the base of Zone NP16 of calcareous nannofossil standard zonations. The revision of the calcareous nannofossil content enabled the identification of numerous secondary events which greatly improved the stratigraphic resolution of this time interval. An important re‐organization of the nannoflora was observed during the Y/L transition, when Reticulofenestra and Dictyococcites (Noelaerhabdaceae) became the most important genera in terms of abundance and dispersal, dominating the Middle Eocene nannofossil assemblages and replacing Toweius and Discoaster taxa characteristic of the lower Eocene. Pentaliths and Blackites experience a great expansion and diversification, whereas Discoaster and Chiasmolithus which are well diversified but never abundant during the Lutetian show a slow turnover. A reassessment of the major bio‐events observed in the Noelaerhabdaceae family as well as revision and correlation of these events with the classical Italian sections (Contessa and Bottaccione) are presented. The new results show that biostratigraphic problems related to the Middle Eocene chronology are not limited to the correlation between calcareous nannofossils and planktonic foraminiferans at the Y/L transition but extend to calcareous nannofossil events commonly used for correlating the Bartonian.  相似文献   

16.
A 100-m-thick Paleocene sequence of mainly pelagic sediments at ODP Site 1121, on the eastern flanks of the Campbell Plateau, contains few to common radiolarians of relatively low diversity in the lower 40 m (Early to early Late Paleocene) and abundant, diverse radiolarian assemblages in the upper 60 m (mid-Late Paleocene). The 150 taxa recorded from the entire Paleocene interval are thought to under-represent the actual species diversity by at least one half as many morphotypes have not been differentiated below the level of genus. Assemblages in the lower 40 m are similar to those described from onland New Zealand and DSDP Site 208 (northern Lord Howe Rise); they are correlated with South Pacific radiolarian zones RP4 and RP5. Assemblages in the upper 60 m differ from other known Late Paleocene assemblages in the great abundance of plagiacanthids and cycladophorids. Similarities are noted with later Cenozoic cool-water assemblages. This upper interval is correlated with South Pacific zone RP6, as revised herein, based on comparison with faunas from Site 208 and Marlborough, New Zealand. The interval is also correlated with the upper part of North Atlantic zone RP6 (RP6b–c) based on the presence of Aspis velutochlamydosaurus, Plectodiscus circularis and Pterocodon poculum. Other species, such as Buryella tetradica and Buryella pentadica, are valuable for local correlation but exhibit considerable diachroneity between the Pacific, Indian and Atlantic Oceans. An age model for the Paleocene interval at Site 1121, based on well-constrained nannofossil and radiolarian datums, indicates that the rate of compacted sediment accumulation doubles from 15 to 30 mm/ka at the RP5/RP6 zonal boundary. In large part this is due to a sudden and pronounced increase in accumulation rates for all siliceous fossils; radiolarians and larger diatoms increase from <100 to >10 000 specimens/cm2/ka. This apparent increase in biosiliceous productivity is age-equivalent to a mid-Paleocene cooling event (57–59 Ma) identified from global stable isotope records that is associated with the heaviest δ13C values for the entire Cenozoic.  相似文献   

17.
Detailed analyses of the benthic foraminiferal assemblages extracted with the cold acetolyse method together with high resolution geochemical and mineralogical investigations across the Paleocene/Eocene (P/E) boundary of the classical succession at Contessa Road (western Tethys), allowed to recognize and document the Paleocene–Eocene Thermal Maximum (PETM) interval, the position of the Benthic Extinction Event (BEE) and the early recovery of benthic faunas in the aftermath of benthic foraminiferal extinction. The stratigraphical interval spanning the P/E boundary consists of dominantly pelagic limestones and two prominent marly beds. Benthic foraminifera indicate that these sediments were deposited at lower bathyal depth, not deeper than 1000–1500 m. The Carbon Isotope Excursion (CIE) interval is characterized by high barite abundance with a peak at the base of the same stratigraphic interval, indicating a complete, although condensed record of the early CIE. A succession of events and changes in the taxonomic structure of benthic foraminifera has been recognized that may be of use for supra-regional stratigraphic correlation across the P/E boundary interval. The composition of the benthic foraminiferal assemblages, dominated by infaunal taxa, indicates mesotrophic and changing conditions on the sea floor during the last  45 kyr of the Paleocene. The BEE occurs at the base of the CIE within the lower marly bed and it is recorded by the extinction of several deep-water cosmopolitan taxa. Then, the lysocline/CCD rose and severe carbonate dissolution occurred. Preservation deteriorated, the faunal density and simple diversity dropped to minimum values and a peak of Glomospira spp. has been observed. Stress-tolerant and opportunistic groups, represented mainly by bi-and triserial taxa, dominate the low-diversity post-extinction assemblages, indicating a benthic foraminiferal recovery under environmental unstable conditions, probably within a context of sustained food transfer to the bottom. A three-phase pattern of faunal recovery is recognizable. At first the lysocline/CCD started to descend and then recovered. Small-sized “Bulimina”, Oridorsalis umbonatus, and Tappanina selmensis rapidly repopulated the severely stressed environment. Later on, Siphogenerinoides brevispinosa massively returns, dominating the assemblage together with other buliminids, Nuttallides truempyi, and Anomalinoides sp.1. Finally, a marked drop in abundance of S. brevispinosa is followed by a bloom of the opportunistic and recolonizer agglutinated Pseudobolivina that, for the first time, is recorded within the main CIE. A second interval of dissolution, but less severe than the previous one, has been recognized within the upper marly bed (uppermost part of the main CIE interval) and it is interpreted as a renewed, less pronounced shoaling of the lysocline/CCD that interrupted the recovery of benthic faunas. This further rise likely represents a response to persistent instability of ocean geochemistry in this sector of the Tethys before the end of the CIE. In the CIE recovery and post CIE intervals, the composition of the benthic foraminiferal assemblages suggests mesotrophic and unstable conditions at the sea floor. According to the geochemical proxy for redox conditions, the deposition of the PETM sediments at Contessa Road occurred in well-oxygenated waters, leading out a widespread oxygen depletion as major cause of the BEE. Changing oceanic productivity, carbonate corrosivity and global warming appear to have played a much more important role in the major benthic foraminiferal extinction at the P/E boundary.  相似文献   

18.
The evolution of the Southern Ocean climate during the late Eocene–late Oligocene interval is examined through high-resolution, quantitative calcareous nannofossil analyses on samples from the Southern Ocean sections on Maud Rise and Kerguelen Plateau. We determined the abundance patterns of the counted species to clarify the biostratigraphy, which we correlated with high-resolution magnetostratigraphy [Roberts, A.P., Bicknell, S.J., Byatt, J., Bohaty, S.M., Florindo, F., Harwood, D.M., 2003a. Magnetostratigraphic calibration of Southern Ocean diatom datums from the Eocene–Oligocene of Kerguelen Plateau (Ocean Drilling Program Sites 744 and 748). In: Florindo, F., Cooper, A.K., O'Brien, P.A. (Eds.), Antarctic Cenozoic Palaeoenvironments: Geologic Record and Models. Palaeogeogr., Palaeoclimatol., Palaeoecol. 198 145–168; Florindo, F., Roberts, A.P., in press. Eocene–Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Geol. Soc. Am. Bull.], and used this data to interpret paleoceanographic changes through the late Eocene to late Oligocene. Percentage plots of the individual species, compared with R-mode principal component and cluster analysis results, allowed us to divide the assemblages into three groups: temperate-water taxa, cool-water taxa, and no temperature-affinity taxa. We attempt correlations between these paleoecological groups and the major sea-surface temperature (SST) variations with tectonic and paleoceanographic changes in the Southern Ocean. During the late Eocene, the nannofossil assemblage data reveal that there were several minor SST decreases (coolings) from 36 to 34 Ma, before the Eocene/Oligocene (E/O) boundary. A sharp cooling event, dated at 33.54 Ma (earliest Oligocene), occurred about 160 kyr after the E/O boundary, which is dated at 33.7 Ma. Relatively stable, cool conditions are interpreted to persist until the latest Oligocene, when an increase in abundance of temperate-water taxa, which corresponds to an antithetical decrease in abundance of cool-water indicators, is recorded.On the basis of our dating, the opening of the Drake Passage, allowing shallow-water circulation, began by 33.54 Ma at the latest, while the establishment of deep-water connections through the Tasmanian Gateway occurred at 33 Ma, as suggested by Exon et al. [Proc. ODP, Init. Rep. 189 (2001) 1].  相似文献   

19.
JAN REES 《Palaeontology》2010,53(4):887-902
Abstract: Callovian and Oxfordian strata in Ogrodzieniec near Zawiercie, southern Poland, have yielded two shark tooth assemblages that collectively include 14 neoselachian taxa. A previously unrecognised member of the Orectolobiformes, Akaimia altucuspis gen. et sp. nov., is described and characterised by a dentition remarkably similar to modern wobbegong sharks (Orectolobidae) by convergence. The assemblages also include the first anterior teeth ever found of the palaeospinacid ‘Synechodusprorogatus Kriwet, in addition to teeth from two other palaeospinacids, Sphenodus spp., four different orectolobiforms, two hexanchids and Protospinax spp. These shark tooth assemblages contribute to the poorly known Callovian and Oxfordian neoselachian faunas and indicate that the diversity was higher than previously appreciated, particularly within the Orectolobiformes.  相似文献   

20.
Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34–29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31–32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites.The composition of the calcareous nannofossil assemblage permits identification of three intervals (I–III). Intervals I and III, correlated to MIS 34–32 and MIS 30–29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian–Atlantic ocean exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号