首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mobilization of selenite by Ralstonia metallidurans CH34   总被引:2,自引:0,他引:2  
Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites.  相似文献   

2.
固定化Ralstonia metallidurans CH34降解苯酚的研究   总被引:1,自引:0,他引:1  
将既能耐抗重金属又能降解苯酚的细菌Ralstonia m etalliduransCH34固定化以提高其降酚效率。首先通过正交实验,得到了固定化该菌种的最优制备条件,然后对固定化细胞的降酚效果进行了研究。结果表明,固定化R.m etalliduransCH34的降酚效果明显优于游离细胞;抗重金属毒性方面也有较大提高;在加入额外碳源(甲苯,柠檬酸)情况下,固定化R.m etalliduransCH34进行苯酚降解时所受影响明显要小于游离态菌。  相似文献   

3.
The iron-containing superoxide dismutase (Fe-SOD) of Ralstonia metallidurans CH34 was purified and characterised as a homodimer of 2 x 21500 Da containing one iron atom per monomer and exhibiting all the characteristics of the prokaryotic Fe-SODs except for a higher isoelectric point. The protein was 2-fold overexpressed in the presence of selenite, zinc or paraquat. R. metallidurans CH34 was suggested to contain a gene encoding for a manganese-containing SOD located in the inducible chromate resistance operon. Whatever the culture conditions used in this study, including the presence of chromate, only a Fe-SOD, genetically distinct from the putative Mn-SOD, was detected. This Fe-SOD seems to be the only active superoxide dismutase expressed in R. metallidurans CH34.  相似文献   

4.
Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se0). We have studied the kinetics of selenite (SeIV) and selenate (SeVI) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se0 and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se0. Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se0 was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. SeIV was detected as a transient species in the first 12 h after selenate introduction, Se0 also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.  相似文献   

5.
Ralastonia metallidurans CH34苯酚降解特性的研究   总被引:3,自引:0,他引:3  
RalstoniametalliduransCH34是从一家锌工厂的沉积物中分离筛选到的一株细菌。对其降解苯酚的特性进行了研究。结果表明R.metalliduransCH34具有很高的降解苯酚的能力,其降解苯酚的速率常数为0.33,降解苯酚的最适条件为pH7.0,温度30℃,装液量20%(v/v)。在高浓度重金属存在的条件下,R.metalliduransCH34仍保持较高的苯酚降解活力。柠檬酸钠、琥珀酸则能促进其对苯酚的降解。  相似文献   

6.
7.
8.
9.
CzcD from Ralstonia metallidurans and ZitB from Escherichia coli are prototypes of bacterial members of the cation diffusion facilitator (CDF) protein family. Expression of the czcD gene in an E. coli mutant strain devoid of zitB and the gene for the zinc-transporting P-type ATPase zntA rendered this strain more zinc resistant and caused decreased accumulation of zinc. CzcD, purified as an amino-terminal streptavidin-tagged protein, bound Zn2+, Co2+, Cu2+, and Ni2+ but not Mg2+, Mn2+, or Cd2+, as shown by metal affinity chromatography. Histidine residues were involved in the binding of 2 to 3 mol of Zn2+ per mol of CzcD. ZitB transported 65Zn2+ in the presence of NADH into everted membrane vesicles with an apparent Km of 1.4 microM and a Vmax of 0.57 nmol of Zn2+ min(-1) mg of protein(-1). Conserved amino acyl residues that might be involved in binding and transport of zinc were mutated in CzcD and/or ZitB, and the influence on Zn2+ resistance was studied. Charged or polar amino acyl residues that were located within or adjacent to membrane-spanning regions of the proteins were essential for the full function of the proteins. Probably, these amino acyl residues constituted a pathway required for export of the heavy metal cations or for import of counter-flowing protons.  相似文献   

10.
In Ralstonia metallidurans CH34, the gene merP encodes for a periplasmic mercury-binding protein which is capable of binding one mercury atom. The metal-binding site of MerP consists of the highly conserved sequence GMTCXXC found in the family that includes metallochaperones and metal-transporting ATPases. We purified MerP from R.metallidurans CH34 and solved its crystal structure under the oxidized form at 2.0A resolution. Superposition with structures of other metal-binding proteins shows that the global structure of R.metallidurans CH34 oxidized MerP follows the general topology of the whole family. The largest differences are observed with the NMR structure of oxidized Shigella flexneri MerP. Detailed analysis of the metal-binding site suggests a direct role for Y66 in stabilizing the thiolate group of C17 during the mercury-binding reaction. The metal-binding site of oxidized MerP is also similar to the metal-binding sites of oxidized copper chaperone for superoxide dismutase and Atx1, two copper-binding proteins from Saccharomyces cerevisiae. Finally, the packing of the MerP crystals suggests that F38, a well-conserved residue in the MerP family may be important in mercury binding and transfer. We propose a possible mechanism of mercury transfer between two CXXC motifs based on a transient bi-coordinated mercury intermediate.  相似文献   

11.
Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se(0)). We have studied the kinetics of selenite (Se(IV)) and selenate (Se(VI)) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se(0) and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se(0). Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se(0) was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. Se(IV) was detected as a transient species in the first 12 h after selenate introduction, Se(0) also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.  相似文献   

12.
CzcE is encoded by the most distal gene of the czc determinant that allows Cupriavidus metallidurans CH34 to modulate its internal concentrations of cobalt, zinc and cadmium by regulation of the expression of the efflux pump CzcCBA. We have overproduced and purified CzcE. CzcE is a periplasm-located dimeric protein able to bind specifically 4 Cu-equivalent per dimer. Spectrophotometry and EPR are indicative of type II copper with typical d-d transitions. Re-oxidation of fully reduced CzcE led to the formation of an air stable semi-reduced form binding both 2 Cu(I) and 2 Cu(II) ions. The spectroscopic characteristics of the semi-reduced form are different of those of the oxidized one, suggesting a change in the environment of Cu(II).  相似文献   

13.
通过探索固定化细菌Ralstonia metallidurans CH34在三相流化反应器中降解苯酚的反应条件,对固定化细胞处理工业废水进行模拟研究,以期提高R.metallidurans CH34降解苯酚的能力和效率。结果表明,固定化R.metallidurans CH34在三相流化反应器中明显提高了降解苯酚的能力,耐抗金属性也有较大的提高,而且能够在模拟工业废水中批次培养3-4次,其降酚能力退化并不明显。这为R.metallidurans CH34实际应用提供了可靠的基础。  相似文献   

14.
The copH gene is one of the 19 open reading frames (ORFs) found in the cop cluster borne by the large plasmid pMol30 in Cupriavidus metallidurans CH34. The entire cluster is involved in detoxification of copper from the cytoplasm as well as from the periplasm. The function of the corresponding protein, CopH, is not yet clear, but it seems to be involved in the late response phase. We have cloned copH and overproduced and purified the corresponding protein. CopH is rather unique as only one paralog can be found in the databases. It is a dimeric protein with a molecular mass of 13 200 Da per subunit and located in the periplasm. The metal binding properties of CopH were examined by using a series of techniques such as UV-visible spectroscopy, circular dichroism (CD), electron paramagnetic resonance (EPR), surface plasmon resonance (SPR), mass spectrometry, and nuclear magnetic resonance (NMR). All together, the corresponding data are consistent with a dimeric protein containing one metal-binding site per subunit. These sites have a high affinity for Cu(II) but can also bind zinc or nickel. CopH does not contain any cysteines or methionines but contains two histidines. EPR and UV-visible features are consistent with the presence of Cu(II) type 2 centers in a nitrogen ligand field. SPR data confirm the involvement of the histidine residues in copper binding. CD and NMR data reveal that CopH is partially unfolded.  相似文献   

15.
16.
17.
Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α(2)β(2)γ(2) and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively.  相似文献   

18.
Ralstonia (Wautersia, Cupriavidus) metallidurans (Rme) is better able to withstand high concentrations of heavy metals than any other well-studied organism. This fact renders it a potential agent of bioremediation as well as an ideal model organism for understanding metal resistance phenotypes. We have analysed the genome of Rme for genes encoding homologues of established and putative transport proteins; 13% of all genes in Rme encode such homologues. Nearly one-third of the transporters identified (32%) appear to function in inorganic ion transport with three-quarters of these acting on cations. Transporters specific for amino acids outnumber sugar transporters nearly 3 : 1, and this fact plus the large number of uptake systems for organic acids indicates the heterotrophic preferences of these bacteria. Putative drug efflux pumps comprise 10% of the encoded transporters, but numerous efflux pumps for heavy metals, metabolites and macromolecules were also identified. The results presented should facilitate genetic manipulation and mechanistic studies of transport in this remarkable bacterium.  相似文献   

19.
Cupriavidus metallidurans CH34 is a β-proteobacterium well equipped to cope with harsh environmental conditions such as heavy metal pollution. The strain carries two megaplasmids specialized in the response to heavy metals and a considerable number of genomic islands, transposons and insertion sequence (IS) elements. The latter were characterized in detail in this study, which revealed nine new IS elements totaling to 21 distinct IS elements from 10 different IS families and reaching a total of 57 intact IS copies in CH34. Analysis of all fully sequenced bacterial genomes revealed that relatives of these IS elements were mostly found in the Burkholderiaceae family (β-proteobacteria) to which C. metallidurans belongs. Three IS elements were 100% conserved in other bacteria suggesting recent interaction and horizontal transfer between these strains. In addition, a number of these IS elements were associated with genomic islands, gene inactivation or rearrangements that alter the autotrophic growth capacities of CH34. The latter rearrangements gave the first molecular evidence for the mutator phenotype that is characteristic for various C. metallidurans strains. Furthermore, differential expression of some IS elements (or adjacent genes in the same strand orientation) was found under heavy metal stress, an environmental stress to which C. metallidurans CH34 is well adapted. These observations indicate that these IS elements play an active role in C. metallidurans CH34 lifestyle, including its metabolic potential and adaptation under selective pressure.  相似文献   

20.
Cupriavidus metallidurans is adapted to high concentrations of transition metal cations and is a model system for studying metal homeostasis in difficult environments. The elemental composition of C. metallidurans cells cultivated under various conditions was determined, revealing the ability of the bacterium to shield homeostasis of one essential metal from the toxic action of another. The contribution of metal uptake systems to this ability was studied. C. metallidurans contains three CorA members of the metal inorganic transport (MIT) protein family of putative magnesium uptake systems, ZupT of the ZRT/IRT protein, or ZIP, family, and PitA, which imports metal phosphate complexes. Expression of the genes for all these transporters was regulated by zinc availability, as shown by reporter gene fusions. While expression of zupT was upregulated under conditions of zinc starvation, expression of the other genes was downregulated at high zinc concentrations. Only corA(1) expression was influenced by magnesium starvation. Deletion mutants were constructed to characterize the contribution of each system to transition metal import. This identified ZupT as the main zinc uptake system under conditions of low zinc availability, CorA(1) as the main secondary magnesium uptake system, and CorA(2) and CorA(3) as backup systems for metal cation import. PitA may function as a cation-phosphate uptake system, the main supplier of divalent metal cations and phosphate in phosphate-rich environments. Thus, metal homeostasis in C. metallidurans is achieved by highly redundant metal uptake systems, which have only minimal cation selectivity and are in combination with efflux systems that "worry later" about surplus cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号