首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
During mammalian evolution, complex systems of epigenetic gene regulation have been established: Epigenetic mechanisms control tissue-specific gene expression, X chromosome inactivation in females and genomic imprinting. Studying DNA sequence conservation in imprinted genes, it becomes evident that evolution of gene function and evolution of epigenetic gene regulation are tightly connected. Furthermore, comparative studies allow the identification of DNA sequence features that distinguish imprinted genes from biallelically expressed genes. Among these features are CpG islands, tandem repeats and retrotransposed elements that are known to play major roles in epigenetic gene regulation. Currently, more and more genetic and epigenetic data sets become available. In future, such data sets will provide the basis for more complex investigations on epigenetic variation in human populations. Therein, an exciting topic will be the genetic and epigenetic variability of imprinted genes and its input on human disease.  相似文献   

2.
Conserved features of imprinted differentially methylated domains   总被引:1,自引:0,他引:1  
Genomic imprinting is a conserved epigenetic phenomenon in eutherian mammals, with regards both to the genes that are imprinted and the mechanism underlying the expression of just one of the parental alleles. Epigenetic modifications of alleles of imprinted genes are established during oogenesis and spermatogenesis, and these modifications are then inherited. Differentially methylated domains (DMDs) of imprinted genes are the genomic sites of these inherited epigenetic imprints. We previously showed that CpG-rich imperfect tandem direct repeats within three different mouse DMDs (Snurf/Snrpn, Kcnq1 and Igf2r), each with a unique sequence, play a central role in maintaining the differential methylation. This finding implicates repeat-related DNA structure, not sequence, in the imprinting mechanism. To better define the important features of this signal, we compared sequences of these three DMD tandem repeats among mammalian species. All DMD repeats contain short indirect repeats, many of which are organized into larger unit repeats. Even though the larger repeat units undergo deletion and addition during evolution (most likely through unequal crossovers during meiosis), the size of DMD tandem repeated regions has remained remarkably stable during mammalian evolution. Moreover, all three DMD tandem repeats have a high-CpG content, an ordered arrangement of CpG dinucleotides, and similar predicted secondary structures. These observations suggest that a structural feature or features of these DMD tandem repeats is the conserved DMD imprinting signal.  相似文献   

3.
Tandem repeats in the CpG islands of imprinted genes   总被引:4,自引:0,他引:4  
Hutter B  Helms V  Paulsen M 《Genomics》2006,88(3):323-332
  相似文献   

4.
Mammalian genes subject to genomic imprinting often form clusters and are regulated by long-range mechanisms. The distal imprinted domain of mouse chromosome 7 is orthologous to the Beckwith-Wiedemann syndrome domain in human chromosome 11p15.5 and contains at least 13 imprinted genes. This domain consists of two subdomains, which are respectively regulated by an imprinting center. We here report the finished-quality sequence of a 0.6-Mb region encompassing the more centromeric subdomain. The sequence contains four imprinted genes (Ascl2/Mash2, Ins2, Igf2 and H19) and reveals previously unidentified CpG islands and tandem repeats, which may be features of imprinted genes. Most interestingly, a unique 210-kb segment consisting almost exclusively of tandem repeats and retroelements is identified. This segment, located between Th and Ins2, has features of heterochromatin-forming DNA and is highly methylated at CpG sites. The segment exhibits asynchronous replication on the parental chromosomes, a feature of the imprinted domains. We propose that this repeat segment could serve either as a boundary between the two subdomains or as a target for epigenetic chromatin modifications that regulate imprinting.  相似文献   

5.
6.
The COPG2, DCN, and SDHD genes are biallelically expressed in cattle   总被引:1,自引:1,他引:0  
  相似文献   

7.
Landmark features of imprinted genes are differentially methylated domains (DMDs), in which one parental allele is methylated on CpG dinucleotides and the opposite allele is unmethylated. Genetic experiments in the mouse have shown that DMDs are required for the parent-specific expression of linked clusters of imprinted genes. To understand the mechanism whereby the differential methylation is established and maintained, we analyzed a series of transgenes containing DMD sequences and showed that imperfect tandem repeats from DMDs associated with the Snurf/Snrpn, Kcnq1, and Igf2r gene clusters govern transgene imprinting. For the Igf2r DMD the minimal imprinting signal is two unit copies of the tandem repeat. This imprinted transgene behaves identically to endogenous imprinted genes in Dnmt1o and Dnmt3L mutant mouse backgrounds. The primary function of the imprinting signal within the transgene DMD is to maintain, during embryogenesis and a critical period of genomic reprogramming, parent-specific DNA methylation states established in the germ line. This work advances our understanding of the imprinting mechanism by defining a genomic signal that dependably perpetuates an epigenetic state during postzygotic development.  相似文献   

8.
Conservation of synteny of mammalian imprinted genes between chicken and human suggested that highly conserved gene clusters were selected long before these genes were recruited for genomic imprinting in mammals. Here we have applied in silico mapping of orthologous genes in pipid frog, zebrafish, spotted green and Japanese pufferfish to show considerable conservation of synteny in lower vertebrates. More than 400 million years ago in a common ancestor of teleost fish and tetrapods, 'preimprinted' chromosome regions homologous to human 6q25, 7q21, 7q32, 11p15, and 15q11-->q12 already contained most present-day mammalian imprinted genes. Interestingly, some imprinted gene orthologues which are isolated from imprinted clusters in mouse and human could be linked to preimprinted regions in lower vertebrates, indicating that separation occurred during mammalian evolution. On the contrary, newly arisen genes by segmental duplication in the mammalian lineage, i.e. SNRPN and FRAT3, were transposed or translocated to imprinted clusters and recruited for parent-specific activity. By analysis of currently available sequences of non-mammalian vertebrates, the imprinted gene clusters homologous to human chromosomes 14q32 and 19q12 are only poorly conserved in chicken, frog, and fish and, therefore, may not have evolved from ancestral preimprinted gene arrays. Evidently, evolution of imprinted gene clusters is an ongoing and dynamic process in mammals. In general, imprinted gene orthologues do not show a higher degree of synteny conservation in vertebrates than non-imprinted genes interspersed with or adjacent to an imprinted cluster.  相似文献   

9.
Genomic imprinting is generally believed to be conserved in all mammals except for egg-laying monotremes, suggesting that it is closely related to placental and fetal growth. As expected, the imprinting status of most imprinted genes is conserved between mouse and human, and some are imprinted even in marsupials. On the other hand, a small number of genes were reported to exhibit species-specific imprinting that is not necessarily accounted for by either the placenta or conflict hypotheses. Since mouse and human represent a single, phylogenetically restricted clade in the mammalian class, a much broader comparison including mammals diverged earlier than rodents is necessary to fully understand the species-specificity and variation in evolution of genomic imprinting. Indeed, comparative analysis of a species-specific imprinted gene Impact using a broader range of mammals led us to propose an alternative dosage control hypothesis for the evolution of genomic imprinting.  相似文献   

10.
Imprinted genes are parent-of-origin dependent, monoallelically expressed genes present in marsupials and eutherian mammals. Altered expression of imprinted genes plays a significant role in the etiology of a variety of human disorders and diseases. Nevertheless, the regulatory mechanisms of imprinting remain poorly defined. The imprinted gene Neuronatin (Nnat) is an excellent candidate for studying imprinting because it resides within the 8.5-kb intron of the nonimprinted gene Bladder Cancer-Associated Protein (Blcap) and is the only imprinted gene within the region. A phylogenetic comparison of this micro-imprinted domain in human, mouse, and rat revealed several candidates for imprint control, including tandem repeats and putative binding sites for trans- acting factors known to be involved in chromatin remodeling. Genome-wide phylogenetic comparisons of species from the three major extant mammalian clades failed, however, to show any evidence of Nnat outside the eutherian lineage. Thus, Nnat is the first identified eutherian-specific imprinted gene, demonstrating that imprinted genes did not arise at a single point during evolution. This finding also suggests that the complexity of imprinting regulation observed at other loci may, in part, be directly related to the amount of time they have been imprinted.  相似文献   

11.
Imprinted genes have important effects on the regulation of fetal growth, development, and postnatal behavior. However, the study of imprinted genes has been limited in mammalian species other than human and mouse. Therefore, the study of porcine imprinted genes is useful for defining the extent of conservation of genomic imprinting among different species. In this study, the imprinting status of porcine NDN, MAGEL2 and MEST genes was determined by direct sequencing of the cDNAs and detection of single nucleotide polymorphisms (SNPs) identified in individuals from reciprocal crosses between Meishan and Large White pigs for allele discrimination. The analysis was carried out in 13 different tissues (skeletal muscle, fat, pituitary gland, heart, lung, liver, kidney, spleen, stomach, small intestine, uterus, ovary and testis) from 12 two-month-old piglets. Imprinting analysis showed that NDN and MAGEL2 were paternally expressed in all tissues where the genes were expressed as in human and mouse. Interestingly, MEST showed tissue-specific imprinting, being paternally expressed in skeletal muscle, fat, pituitary gland, heart, kidney, lung, stomach and uterus, and maternally expressed in spleen and liver.  相似文献   

12.
13.
Studies in the mouse have established that both parental genomes are essential for normal embryonic development. Parthenogenetic mouse embryos (which have two maternal genomes and no paternal genome), for example, are growth-retarded and die at early postimplantation stages. The distinct maternal and paternal contributions are mediated by genomic imprinting, an epigenetic mechanism by which the expression of certain genes is dependent on whether they are inherited from mother or father. Although comparative studies have established that many imprinted mouse (and rat) genes are allele-specifically expressed in humans as well (and vice versa), so far imprinting studies have not been performed in other mammalian species. When considering evolutionary theories of genomic imprinting, it would be important to know how widely it is conserved among placental mammals. We have investigated its conservation in a bovid ruminant, the domestic sheep, by comparing parthenogenetic and normal control embryos. Our study establishes that, like in the mouse, parthenogenetic development in sheep is associated with growth-retardation and does not proceed beyond early fetal stages. These developmental abnormalities are most likely caused by imprinted genes. We demonstrate that, indeed, like in mice and humans, the growth-related PEG1/MEST and Insulin-like Growth Factor 2 (IGF2) genes are expressed from the paternal chromosome in sheep. These observations suggest that genomic imprinting is conserved in a third, evolutionarily rather diverged group of placental mammals, the ruminants. Received: 13 May 1998 / Accepted: 16 July 1998  相似文献   

14.
Using computer-based methods we determined the global distribution of short interspersed nuclear elements (SINEs) in the human and mouse X chromosomes. It has been shown that this distributions is similar to the distributions of CpG islands and genes but is different from the distribution of LINE1 elements. Since SINEs (human Alu and mouse B2) may have binding sites for Polycomb protein YY1, we suggest that these repeats can serve as additional signals ("boosters") in Polycomb-dependent silencing of gene rich segments during X inactivation.  相似文献   

15.
16.
The Impact is an evolutionarily conserved gene subjected to genomic imprinting in mouse but not in human. A characteristic tandem repeat similar to those found in many other imprinted genes and an elevated expression level, both observed only for the mouse gene, are implicated in the evolution of imprinting, to which the repeat might have contributed via enhancement of the expression. To pursue the possibility further, we examined the correlation among the repeat, expression level, and imprinting of Impact in various mammals ranging from rodents, lagomorphs, carnivores, artiodactyls to primates. Intriguingly, rabbit Impact is abundantly expressed and imprinted like those of rodents, but is missing the repeat from its first intron like those of other mammals that express both alleles weakly. It thus seems that lineage-specific enhancement of gene expression rather than the tandem repeat per se played a critical role in the evolution of imprinting of Impact.  相似文献   

17.
The mouse insulin-like growth factor II gene (Igf2) is physicallylinked to the insulin II gene (Ins2) and both are subject totissue-specific genomic imprinting. The paternal-specific expressionof Igf2 has been associated with hypermethylation of some CpGsites in the 5' flanking region and in the body of the gene.As a first step in analyzing the structural features of thisimprinted locus, we here report the complete nucleotide sequenceof Igf2, including all introns and the intergenic region adjacentto Ins2. This 28-kb segment of mouse chromosome 7 exhibits 80%overall identity with the corresponding rat sequence and hasa high GC content of 52%. In addition to the known CpG islandwithin the second Igf2 promoter, another island was identifiedapproximately 2 kb 5' to the first exon. Other features of thislocus include a 35-fold tandem repeat of an 11-bp sequence thatoverlaps Igf2 pseudo-exon 2, and a B2 repeat element in theintergenic region between Ins2 and Igf2. The GC-richness andthe presence of CpG islands associated with tandem repeats arecommon features of imprinted genes and thus may play a rolein the imprinting mechanism.  相似文献   

18.
19.
Using computer-based methods, we determined the global distribution of short interspersed nuclear elements (SINEs) on human and mouse X chromosomes. It was shown that this distribution was similar to the distribution of CpG islands and genes, but was different from the distribution of LINE1 elements. Since SINEs (human Alu and mouse B2) may have binding sites for Polycomb protein YY1, we suggest that these repeats can serve as additional signals (“boosters”) in Polycomb-dependent silencing of gene-rich segments during X inactivation.  相似文献   

20.
The distinguishing sequence characteristics of mouse imprinted genes   总被引:3,自引:0,他引:3  
Sequence comparison analysis has been carried out for 31 imprinted mouse genes and a set of 150 control genes. The imprinted genes were found to be associated with significantly reduced numbers of short interspersed transposable elements (SINEs), in particular SINE Alu repeats. This is similar to recent analyses of human imprinted genes and supports the suggestion that there is either active selection against SINE elements in imprinted regions or a reduced rate of insertion of these elements. The reduction in numbers of SINEs was more consistent in paternally expressed genes, whereas for maternally expressed genes significantly reduced numbers of SINE-B2 elements were coupled with increased numbers of SINE-B4 and SINE-ID elements. Paternally expressed genes were also found to be associated with a lower GC content. Discriminant analysis revealed that the two sub-groups of imprinted genes can be cleanly separated from each other on the basis of their genomic sequence characteristics and that they tend to localize to different genomic compartments. The differences between the sequence characteristics of imprinted and control genes have also enabled us to develop a discriminant function that can be used in a genome-wide screen to identify candidate imprinted genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号