首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of measles virus with its receptor signaling lymphocytic activation molecule (SLAM) controls cell entry and governs tropism. We predicted potential interface areas of the measles virus attachment protein hemagglutinin to begin the investigation. We then assessed the relevance of individual amino acids located in these areas for SLAM-binding and SLAM-dependent membrane fusion, as measured by surface plasmon resonance and receptor-specific fusion assays, respectively. These studies identified one hemagglutinin protein residue, isoleucine 194, which is essential for primary binding. The crystal structure of the hemagglutinin-protein localizes Ile-194 at the interface of propeller blades 5 and 6, and our data indicate that a small aliphatic side chain of residue 194 stabilizes a protein conformation conducive to binding. In contrast, a quartet of residues previously shown to sustain SLAM-dependent fusion is not involved in binding. Instead, our data prove that after binding, this quartet of residues on propeller blade 5 conducts conformational changes that are receptor-specific. Our study sets a structure-based stage for understanding how the SLAM-elicited conformational changes travel through the H-protein ectodomain before triggering fusion protein unfolding and membrane fusion.  相似文献   

2.
Antibody-targeted cell fusion   总被引:4,自引:0,他引:4  
Membrane fusion has many potential applications in biotechnology. Here we show that antibody-targeted cell fusion can be achieved by engineering a fusogenic viral membrane glycoprotein complex. Three different single-chain antibodies were displayed at the extracellular C terminus of the measles hemagglutinin (H) protein, and combinations of point mutations were introduced to ablate its ability to trigger fusion through the native viral receptors CD46 and SLAM. When coexpressed with the measles fusion (F) protein, using plasmid cotransfection or bicistronic adenoviral vectors, the retargeted H proteins could mediate antibody-targeted cell fusion of receptor-negative or receptor-positive index cells with receptor-positive target cells. Adenoviral expression vectors mediating human epidermal growth factor receptor (EGFR)-targeted cell fusion were potently cytotoxic against EGFR-positive tumor cell lines and showed superior antitumor potency against EGFR-positive tumor xenografts as compared with control adenoviruses expressing native (untargeted) or CD38-targeted H proteins.  相似文献   

3.
麻疹病毒受体与病毒侵入   总被引:1,自引:0,他引:1  
麻疹病毒是一种具囊膜的负链RNA病毒,两种主要的囊膜蛋白血凝素蛋白(H)和膜融合蛋白(F)表达在膜表面负责病毒侵入过程中与宿主受体的结合和膜融合过程.病毒囊膜蛋白与受体的相互作用是病毒侵入宿主的关键步骤,决定了病毒感染能力、种属和组织嗜性.因此,囊膜病毒与受体的结合位点往往成为重要的抗病毒药物的靶点.目前已发现的3种麻疹病毒受体包括CD46、SLAM和Nectin-4.以下综述了麻疹病毒受体的特征及在病毒侵入中的作用、麻疹病毒H蛋白与受体的相互作用机制,为抗病毒药物设计及麻疹病毒作为肿瘤治疗性载体的应用提供理论依据.  相似文献   

4.
Measles virus has been reported to enter host cells via either of two cellular receptors, CD46 and CD150 (SLAM). CD46 is found on most cells of higher primates, while SLAM is expressed on activated B, T, and dendritic cells and is an important regulatory molecule of the immune system. Previous reports have shown that measles virus can down regulate expression of its two cellular receptors on the host cell surface during infection. In this study, the process of down regulation of SLAM by measles virus was investigated. We demonstrated that expression of the hemagglutinin (H) protein of measles virus was sufficient for down regulation. Our studies provided evidence that interactions between H and SLAM in the endoplasmic reticulum (ER) can promote the down regulation of SLAM but not CD46. In addition, we demonstrated that interactions between H and SLAM at the host cell surface can also contribute to SLAM down regulation. These results indicate that two mechanisms involving either intracellular interactions between H and SLAM in the ER or receptor-mediated binding to H at the surfaces of host cells can lead to the down regulation of SLAM during measles virus infection.  相似文献   

5.
Polyclonal antibody to measles virus can have profound effects on external (outer plasma membrane) as well as internal (cytoplasmic) viral polypeptides expressed in infected cells. The process, termed "antibody-induced antigenic modulation," was further investigated by using monoclonal antibody to several viral polypeptides. Four monoclonal antibodies against the viral hemagglutinin had the ability to decrease the expression of the phosphoprotein, fusion, and membrane protein. A monoclonal antibody to the nucleocapsid protein did not cause these changes. The observed decreases were not due to preferential degradation of viral polypeptides as determined by pulse-chase experiments. Our results indicate that a specific signal to an epitope on the plasma membrane (monoclonal antibody measles virus hemagglutinin) can alter the expression of measles virus phosphoprotein and membrane protein, both polypeptides present in the cytoplasm of infected cells.  相似文献   

6.
Signaling lymphocytic activation molecule (SLAM, CD150) is the universal morbillivirus receptor. Based on the identification of measles virus (MV) hemagglutinin (H) amino acids supporting human SLAM-dependent cell entry, we mutated canine distemper virus (CDV) H and identified residues necessary for efficient canine SLAM-dependent membrane fusion. These residues are located in two nearby clusters in a new CDV H structural model. To completely abolish SLAM-dependent fusion, combinations of mutations were necessary. We rescued a SLAM-blind recombinant CDV with six mutations that did not infect ferret peripheral blood mononuclear cells while retaining full infectivity in epithelial cells.  相似文献   

7.
Clinical isolates of measles virus (MV) use signaling lymphocyte activation molecule (SLAM) as a cellular receptor, whereas vaccine and laboratory strains may utilize the ubiquitously expressed CD46 as an additional receptor. MVs also infect, albeit inefficiently, SLAM(-) cells, via a SLAM- and CD46-independent pathway. Our previous study with recombinant chimeric viruses revealed that not only the receptor-binding hemagglutinin (H) but also the matrix (M) protein of the Edmonston vaccine strain can confer on an MV clinical isolate the ability to grow well in SLAM(-) Vero cells. Two substitutions (P64S and E89K) in the M protein which are present in many vaccine strains were found to be responsible for the efficient growth of recombinant virus in Vero cells. Here we show that the P64S and E89K substitutions allow a strong interaction of the M protein with the cytoplasmic tail of the H protein, thereby enhancing the assembly of infectious particles in Vero cells. These substitutions, however, are not necessarily advantageous for MVs, as they inhibit SLAM-dependent cell-cell fusion, thus reducing virus growth in SLAM(+) B-lymphoblastoid B95a cells. When the cytoplasmic tail of the H protein is deleted, a virus with an M protein possessing the P64S and E89K substitutions no longer grows well in Vero cells yet causes cell-cell fusion and replicates efficiently in B95a cells. These results reveal a novel mechanism of adaptation and attenuation of MV in which the altered interaction of the M protein with the cytoplasmic tail of the H protein modulates MV growth in different cell types.  相似文献   

8.
Human signaling lymphocytic activation molecule (SLAM; also known as CDw150) has been shown to be a cellular receptor for measles virus (MV). Chinese hamster ovary cells transfected with a mouse SLAM cDNA were not susceptible to MV and the vesicular stomatitis virus pseudotype bearing MV envelope proteins alone, indicating that mouse SLAM cannot act as an MV receptor. To determine the functional domain of the receptor, we tested the abilities of several chimeric SLAM proteins to function as MV receptors. The ectodomain of SLAM comprises the two immunoglobulin superfamily domains (V and C2). Various chimeric transmembrane proteins possessing the V domain of human SLAM were able to act as MV receptors, whereas a chimera consisting of human SLAM containing the mouse V domain instead of the human V domain no longer acted as a receptor. To examine the interaction between SLAM and MV envelope proteins, recombinant soluble forms of SLAM were produced. The soluble molecules possessing the V domain of human SLAM were shown to bind to cells expressing the MV hemagglutinin (H) protein but not to cells expressing the MV fusion protein or irrelevant envelope proteins. These results indicate that the V domain of human SLAM is necessary and sufficient to interact with the MV H protein and allow MV entry.  相似文献   

9.
Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein.  相似文献   

10.
Signaling lymphocytic activation molecule (SLAM; also known as CDw150) has been reported as the receptor of measles virus (MV) interacting with MV hemagglutinin (MVH). In this study, we developed a baculovirus-derived vector, the Bacmid-egfp, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP) under the control of the promoter of very late polyhedrin gene from Autographa californica multiple nucleopolyhedrovirus (AcMNPV), and employed the recombinant baculovirus to express SLAM in Sf9 (Spodoptera frugiperda) cells and investigate SLAM function. The result showed that the integration of the EGFP expression cassette in the Bac-to-Bac system facilitated research with the system without introducing compromises due to its use. SLAM protein fused to His-tag was expressed in Sf9 cells through the modified Bac-to-Bac system. The expressed SLAM was identified as approximately 46 kDa, and it presented on the cell surface, as revealed by fluorescent immunochemical staining and confocal microscopic analysis. The pull-down assay proved that SLAM protein expressed in this system could interact with MVH protein. After incubating with MV vaccine strain S191, cell fusion was only observed in the Sf9 cells expressing both EGFP and SLAM from recombinant baculovirus rather than those expressing EGFP only from the modified viral vector. Furthermore, MV replicated and induced apoptosis in the Sf9 cells with SLAM expression.  相似文献   

11.
Measles has a host range restricted to humans and monkeys in captivity. Fresh measles virus (MV) isolates replicate readily in several human and simian B-cell lines but need a period of adaptation to other types of cells. The identification of CD46 and CD150 (SLAM) as cellular receptors for MV has helped to clarify certain aspects of the immunobiology of MV infections. We have examined the properties of an MV wild-type strain grown in the epithelial cell line Vero. After adaptation, this virus expressed high levels of both the viral glycoproteins (hemagglutinin and fusion protein) but did not induce fusion (syncytia). No changes in the amino acid sequence were found in either of the viral glycoproteins. Using several approaches, the Vero-adapted virus could not be shown to interact with CD46 either in the initiation or during the course of infection. The presence of human SLAM expressed in the Vero cells rapidly gave rise to fusion and lower yields of infectious virus.  相似文献   

12.
Paramyxoviruses: different receptors - different mechanisms of fusion   总被引:1,自引:0,他引:1  
Paramyxovirus-mediated membrane fusion usually requires an interaction between the viral-attachment and -fusion proteins. The mechanism by which this interaction regulates fusion differs between paramyxoviruses that bind to sialic acid-containing receptors and those that recognize specific proteins. The recently solved structure of the globular head of the measles virus hemagglutinin suggests that this difference might be related to the location of the receptor-binding sites on the attachment proteins of the two classes of paramyxoviruses.  相似文献   

13.
Natural or wild-type (wt) measles virus (MV) infection in vivo which is restricted to humans and certain monkeys represents an enigma in terms of receptor usage. Although wt MV is known to use the protein SLAM (CD150) as a cell receptor, many human tissues, including respiratory epithelium in which the infection initiates, are SLAM negative. These tissues are CD46 positive, but wt MV strains, unlike vaccinal and laboratory MV strains, are not thought to use CD46 as a receptor. We have identified a novel CD46 binding site at residues S548 and F549, in the hemagglutinin (H) protein from a laboratory MV strain, which is also present in wt H proteins. Our results suggest that although wt MV interacts with SLAM with high affinity, it also possesses the capacity to interact with CD46 with low affinity.  相似文献   

14.
Wild-type measles virus (MV) strains use the signaling lymphocytic activation molecule (SLAM; CD150) and the adherens junction protein nectin-4 (poliovirus receptor-like 4 [PVRL4]) as receptors. Vaccine MV strains have adapted to use ubiquitous membrane cofactor protein (MCP; CD46) in addition. Recently solved cocrystal structures of the MV attachment protein (hemagglutinin [H]) with each receptor indicate that all three bind close to a hydrophobic groove located between blades 4 and 5 (β4-β5 groove) of the H protein β-propeller head. We used this structural information to focus our analysis of the functional footprints of the three receptors on vaccine MV H. We mutagenized this protein and tested the ability of individual mutants to support cell fusion through each receptor. The results highlighted a strong overlap between the functional footprints of nectin-4 and CD46 but not those of SLAM. A soluble form of nectin-4 abolished vaccine MV entry in nectin-4- and CD46-expressing cells but only reduced entry through SLAM. Analyses of the binding kinetics of an H mutant with the three receptors revealed that a single substitution in the β4-β5 groove drastically reduced nectin-4 and CD46 binding while minimally altering SLAM binding. We also generated recombinant viruses and analyzed their infections in cells expressing individual receptors. Introduction of a single substitution into the hydrophobic pocket affected entry through both nectin-4 and CD46 but not through SLAM. Thus, while nectin-4 and CD46 interact functionally with the H protein β4-β5 hydrophobic groove, SLAM merely covers it. This has implications for vaccine and antiviral strategies.  相似文献   

15.
The persistence of measles virus in selected areas of the brains of four patients with subacute sclerosing panencephalitis (SSPE) was characterized by immunohistological and biochemical techniques. The five measles virus structural proteins were never simultaneously detectable in any of the brain sections. Nucleocapsid proteins and phosphoproteins were found in every diseased brain area, whereas hemagglutinin protein was detected in two cases, fusion protein was detected in three cases, and matrix protein was detected in only one case. Also, it could be shown that the amounts of measles virus RNA in the brains differed from patient to patient and in the different regions investigated. In all patients, plus-strand RNAs specific for these five viral genes could be detected. However, the amounts of fusion and hemagglutinin mRNAs were low compared with the amounts in lytically infected cells. The presence of particular measles virus RNAs in SSPE-infected brains did not always correlate with mRNA activity. In in vitro translations, the matrix protein was produced in only one case, and the hemagglutinin protein was produced in none. These results indicate that measles virus persistence in SSPE is correlated with different defects of several genes which probably prevent assembly of viral particles in SSPE-infected brain tissue.  相似文献   

16.
Wild-type measles virus (MV) strains use human signaling lymphocyte activation molecule (SLAM) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both SLAM and CD46 as receptors. Although the expression of SLAM is restricted to cells of the immune system (lymphocytes, dendritic cells, and monocytes), histopathological studies with humans and experimentally infected monkeys have shown that MV also infects SLAM-negative cells, including epithelial, endothelial, and neuronal cells. In an attempt to explain these findings, we produced the enhanced green fluorescent protein (EGFP)-expressing recombinant MV (IC323-EGFP) based on the wild-type IC-B strain. IC323-EGFP showed almost the same growth kinetics as the parental recombinant MV and produced large syncytia exhibiting green autofluorescence in SLAM-positive cells. Interestingly, all SLAM-negative cell lines examined also showed green autofluorescence after infection with IC323-EGFP, although the virus hardly spread from the originally infected individual cells and thus did not induce syncytia. When the number of EGFP-expressing cells after infection was taken as an indicator, the infectivities of IC323-EGFP for SLAM-negative cells were 2 to 3 logs lower than those for SLAM-positive cells. Anti-MV hemagglutinin antibody or fusion block peptide, but not anti-CD46 antibody, blocked IC323-EGFP infection of SLAM-negative cells. This infection occurred under conditions in which entry via endocytosis was inhibited. These results indicate that MV can infect a variety of cells, albeit with a low efficiency, by using an as yet unidentified receptor(s) other than SLAM or CD46, in part explaining the observed MV infection of SLAM-negative cells in vivo.  相似文献   

17.
The efficiency with which different measles virus (MV) strains enter cells through the immune cell-specific protein SLAM (CD150) or other receptors, including the ubiquitous protein CD46, may influence their pathogenicity. We compared the cell entry efficiency of recombinant MV differing only in their attachment protein hemagglutinin (H). We constructed these viruses with an additional gene expressing an autofluorescent reporter protein to allow direct detection of every infected cell. A virus with a wild-type H protein entered cells through SLAM two to three times more efficiently than a virus with the H protein of the attenuated strain Edmonston, whereas cell entry efficiency through CD46 was lower. However, these subtle differences were amplified at the cell fusion stage because the wild-type H protein failed to fuse CD46-expressing cells. We also proved formally that a mutation in H protein residue 481 (asparagine to tyrosine) results in improved CD46-specific entry. To define the selective pressure exerted on that codon, we monitored its evolution in different H protein backgrounds and found that several passages in CD46-expressing Vero cells were necessary to shift it in the majority of the MV RNA. To verify the importance of these observations for human infections, we examined MV entry into peripheral blood mononuclear cells and observed that viruses with asparagine 481 H proteins infect these cells more efficiently.  相似文献   

18.
Here, we provide direct evidence that the receptor-binding site of measles virus (MV) hemagglutinin protein itself forms an effective conserved neutralizing epitope (CNE). Several receptor-interacting residues constitute the CNE. Thus, viral escape from neutralization has to be associated with loss of receptor-binding activity. Since interactions with both the signaling lymphocyte activation molecule (SLAM) and nectin4 are critical for MV pathogenesis, its escape, which results from loss of receptor-binding activity, should not occur in nature.  相似文献   

19.
麻疹病毒血凝素基因工程抗原及其抗原性检测(英文)   总被引:1,自引:0,他引:1  
将麻疹病毒 (Nepal株 )的血凝素 (hemagglutinin)基因插入真核表达载体pIRES EGFP ,并在HeLa细胞中表达 .因其较低的表达量 ,所以将其截短 ,去除跨膜区 .使这个截短的HA基因与绿色荧光蛋白基因融合 ,并克隆至原核表达载体pET 2 8b中 .将重组质粒转入大肠杆菌中表达 ,产生了分子量约为 90kD的融合蛋白 .通过ELISA和Western印迹来检测这个基因工程蛋白的抗原性 .在检测一系列的血凝素阳性或阴性的人血清中 ,这个融合蛋白的阳性检出率为 90 % ,阴性检出率为 10 0 % (与市售麻疹病毒诊断试剂盒相比较 ) .由于此HA蛋白是原核表达产物 ,回避了真核表达系统复杂的操作过程和昂贵的费用 ,所以 ,这个麻疹病毒血凝素基因工程抗原有望成为一种新型、便捷的麻疹病毒诊断试剂  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号