首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equine β-lactoglobulin (ELG) assumes non-native helices during refolding and in partially folded states. Previously, circular dichroism (CD) combined with site-directed mutagenesis identified helical regions in the acid- and cold-denatured states of ELG. It is also known that a fragment of ELG, CHIBL (residues 88-142), has a structure similar to that of the cold-denatured state. For the study reported herein, the structure of a shorter fragment, CHIBLΔF (residues 97-142), was investigated by CD and nuclear magnetic resonance spectroscopy. The secondary chemical shifts clearly showed that non-native α-helices are present in two different regions, residues 98-107 and 114-135, and are connected by a native disulfide bond. The CD spectra of two peptides that correspond to the helical regions are characterized by weak helical signatures, and the sum of their CD spectra is nearly the same as the spectrum of disulfide-reduced CHIBLΔF. Therefore, the non-native helices are stabilized by the disulfide, and non-native helix formation may occur only during the refolding of the disulfide-intact protein. Supporting this conclusion is the observation that tear lipocalin, a homologue of ELG that lacks the disulfide, does not form non-native helices during folding.  相似文献   

2.
β-Lactoglobulin (LG) contains nine β-strands (strands A-I) and one α-helix. Strands A-H form a β-barrel. At neutral pH, bovine LG (BLG) forms a dimer and the dimer interface consists of AB-loops and the I-strands of two subunits. On the other hand, equine LG (ELG) is monomeric. The residues 145-153 of BLG, which compose a dimer interface, are entirely different from those of ELG. The difference in the association states between BLG and ELG can be attributed to the residues 145-153. To confirm this, we constructed a chimeric LG, ImBLG (I-strand mutated BLG), in which the residues 145-153 were replaced with those of ELG. Gel-filtration chromatography and analytical ultracentrifugation revealed that ImBLG existed as a monomer. To identify the residues important for dimerization, we constructed several revertants and investigated their association. This experiment revealed that, in addition to the interface residues (Ile147, Leu149 and Phe151), Met145 is critical for dimerization. Although Met145 does not contact with the other protomer, it seems to be important in determining the backbone conformation of the I-strand. This was supported by the fact that all Met145-containing mutants showed circular dichroism spectra similar to BLG but different from ImBLG.  相似文献   

3.
Domain 1 of the cell adhesion protein CD2 (CD2-1) has an all β-structure typical of proteins belonging to the immunoglobin superfamily. It has a remarkable, ability to fold as a native monomer or a metastable intertwined dimer. To understand the origin of structural rearrangements of CD2-1, we have studied equilibrium unfolding of the protein using various biophysical spectroscopic techniques. At temperatures above approx 68°C, a partially folded state of CD2-1 (H state) with a distinct secondary structure, involving largely exposed aromatic and hydrophobic residues and a substantially perturbed tertiary structure, is observed. In contrast, an unfolded state (D state) of CD2-1 with random-coil-like secondary and tertiary structures is observed in 6 M GuHCl. This partially folded high-temperature state has increased negative molar ellipticity at 222 nm in far-ultraviolet CD spectra, implying formation of a non-native helical conformation. The existence of this non-native high-temperature intermediate is consistent with relatively high intrinsic helical propensities in the primary sequence of CD2-1. This conformation flexibility may be important in the observed domain swapping of CD2-1.  相似文献   

4.
Measurement of the content of polyamines in pancreatic islets indicated that no significant change in their concentration took place during glucose-stimulated insulin release. The finding, together with the absence of any effect of -difluoromethylornithine on glucosestimulated insulin release suggested that rapid synthesis of polyamines is not involved in stimulus-secretion coupling in the -cell. The concentration of polyamines found in islets were high enough for them to act as substrates for the Ca2+-dependent islet transglutaminase during insulin release. This was further demonstrated by the ability of islet transglutaminase to incorporate [14C]putrescine into proteins from islet homogenates and by the demonstration of an increase in the covalent incorporation of [14C]putrescine into the proteins of intact islets following their challenge with glucose. Unlike monoamine substrates of transglutaminase, putrescine failed to effectively inhibit insulin release when its intracellular concentration was increased. A role for polyamines in the secretory process through their incorporation into islet proteins is suggested.  相似文献   

5.
Abstract

The funnel shaped energy landscape model of the protein folding suggests that progression of folding proceeds through multiple pathways, having the multiple intermediates which leads to multidimensional free-energy surface. Herein, we applied all-atom MD simulation to conduct a comparative study on the structure of β-lactoglobulin (β-LgA) in aqueous mixture of 8?M urea and 8?M dimethyl sulfoxide (DMSO), at different temperatures. The cumulative results of multiple simulations suggest a common unfolding pathway of β-LgA, occurred through the stable and meta-stable intermediates (I), in both urea and DMSO. However, the free-energy landscape (FEL) analyses show that the structural transitions of I-states are energetically different. In urea, FEL shows distinct ensemble of intermediates, I1 and I2, separated by the energy barrier of ~3.0?kcal mol?1. Similarly, we find the population of two distinct I1 and I2 states in DMSO, however, the I1 appeared transiently around ~30–35?ns and is short-lived. But, the I2 ensemble is observed structurally compact and long-lived (~50–150?ns) as compared to unfolding in urea. Furthermore, the I1 and I2 are separated through a high energy barrier of ~6.0?kcal mol?1. Thus, our results provide the structural insights of intermediates which essentially bear the signature of a different unfolding pathway of β-LgA in urea and DMSO.

Abbreviations β-LgA β-lactoglobulin

DMSO dimethyl sulfoxide

FEL free-energy landscape

GdmCl guanidinium chloride

I intermediate state

MG molten globule state

PME particle mesh Ewald

Q fraction of native contacts

RMSD root mean square deviation

RMSF root mean square fluctuation

Rg radius of gyration

SASA solvent Accessible Surface Area

scSASA the side chain SASA

Trp tryptophan

Communicated by Ramaswamy H. Sarma  相似文献   

6.
Protein aggregates can be stabilised by disulphide bridges. The whey protein β-lactoglobulin (β-lac) contains a disulphide bridge and a free cysteine that are shielded from the solvent by an α-helix. These groups are important in the thiol–disulphide exchange that occurs during aggregation and gelation of β-lac. Replica exchange molecular dynamics simulations show that the exposure mechanism is very different for the two buried groups. While melting of the α-helix enhances exposure of the free cysteine, it does not for the buried bridge. These findings shed light on the molecular mechanism of the first step of β-lac denaturation and aggregation.  相似文献   

7.
8.
Influence of 12 nonpolar amino acids residues from the hydrophobic core of apomyoglobin on stability of its native state and folding intermediate was studied. Six of the selected residues are from the A, G and H helices; these are conserved in structure of the globin family, although nonfunctional, that is, not involved in heme binding. The rest are nonconserved hydrophobic residues that belong to the B, C, D, and E helices. Each residue was substituted by alanine, and equilibrium pH‐induced transitions in apomyoglobin and its mutants were studied by circular dichroism and fluorescent spectroscopy. The obtained results allowed estimating changes in their free energy during formation of the intermediate state. It was first shown that the strength of side chain interactions in the apomyoglobin intermediate state amounts to 15–50% of that in its native state for conserved residues, and practically to 0% for nonconserved residues. These results allow a better understanding of interactions occurring in the intermediate state and shed light on involvement of certain residues in protein folding at different stages.  相似文献   

9.
Proteolytic digestion of bovine β-lactoglobulin by trypsin yielded four peptide fragments with bactericidal activity. The peptides were isolated and their sequences were found as follows: VAGTWY (residues 15–20), AASDISLLDAQSAPLR (residues 25–40), IPAVFK (residues 78–83) and VLVLDTDYK (residues 92–100). The four peptides were synthesized and found to exert bactericidal effects against the Gram-positive bacteria only. In order to understand the structural requirements for antibacterial activity, the amino acid sequence of the peptide VLVLDTDYK was modified. The replacement of the Asp (98) residue by Arg and the addition of a Lys residue at the C-terminus yielded the peptide VLVLDTRYKK which enlarged the bactericidal activity spectrum to the Gram-negative bacteria Escherichia coli and Bordetella bronchiseptica and significantly reduced the antibacterial capacity of the peptide toward Bacillus subtilis. By data base searches with the sequence VLVLDTRYKK a high homology was found with the peptide VLVATLRYKK (residues 55–64) of human blue-sensitive opsin, the protein of the blue pigment responsible for color vision. A peptide with this sequence was synthesized and assayed for bactericidal activity. VLVATLRYKK was strongly active against all the bacterial strains tested. Our results suggest a possible antimicrobial function of β-lactoglobulin after its partial digestion by endopeptidases of the pancreas and show moreover that small targeted modifications in the sequence of β-lactoglobulin could be useful to increase its antimicrobial function.  相似文献   

10.
Small β-hairpin peptides have been widely used as models for the folding of β-sheets. But how applicable is the folding of such models to β-structure in larger proteins with conventional hydrophobic cores? Here we present multiple unfolding simulations of three such proteins that contain the WW domain double hairpin β-sheet motif: cold shock protein A (CspA), cold shock protein B (CspB) and glucose permease IIA domain. We compare the behavior of the free motif in solution and in the context of proteins of different size and architecture. Both Csp proteins lost contacts between the double-hairpin motif and the protein core as the first step of unfolding and proceeded to unfold with loss of the third β-strand, similar to the isolated WW domain. The glucose permease IIA domain is a larger protein and the contacts between the motif and the core were not lost as quickly. Instead the unfolding pathway of glucose permease IIA followed a different pathway with β1 pulling away from the sheet first. Interestingly, when the double hairpin motif was excised from the glucose permease IIA domain and simulated in isolation in water it unfolded by the same pathway as the WW domain, indicating that it is tertiary interactions with the protein that alter the motif’s unfolding not a sequence dependent effect on its intrinsic unfolding behavior. With respect to the unfolding of the hairpins, there was no consistent order to the loss of hydrogen bonds between the β-strands in the hairpins in any of the systems. Our results show that while the folding behavior of the isolated WW domain is generally consistent with the double hairpin motif’s behavior in the cold shock proteins, it is not the case for the glucose permease IIA domain. So, one must be cautious in extrapolating findings from model systems to larger more complicated proteins where tertiary interactions can overwhelm intrinsic behavior.  相似文献   

11.
Spectrophotometric and light scattering measurements, along with optical microscopy, were used to follow the complexation and coacervation process that occur when β-lactoglobulin (BLG)/tragacanthin (T) mixed dispersions (0.3 wt.% total concentration; BLG:T ratio of 2:1) were brought from pH 6 to pH 2. In addition, the coupling of slow in situ acidification of the mixture and rheometry was utilised to gain deeper insights into pH-induced structural transitions during the assembly process. The results obtained by this multi-methodological approach allowed the associative phase separation process to be parameterised in terms of a set of characteristic pH values (~5.3, ~4.8, ~4.5, ~4.15, ~4, ~3.8, ~2.5) at which critical structural changes took place. Investigation of the absorbance profiles of complexed/coacervated systems as a function of time revealed that several transitions could occur at different time scales. Morphological changes in the assemblies and the subsequent formation of some flocculant substances during the late stage of process were clearly visualised using microscopy.  相似文献   

12.
The gene for the maturation (A) protein of the single-stranded RNA coliphage MS2 is preceded by an untranslated leader of 130 nt. Secondary structure of the leader was deduced by phylogenetic comparison and by probing with enzymes and chemicals. The RNA folds into a cloverleaf, i.e., three stem-loop structures enclosed by a long-distance interaction (LDI). This LDI is essential for translational control. Its 3'moiety contains the Shine-Dalgarno region of the A-protein gene, whereas its complement is located 80 nt upstream, i.e., about 30 nt from the 5'-terminus of the RNA chain. Mutational analysis shows that this base pairing represses expression of the A-protein gene. We present a model in which translational starts can only take place on nonequilibrated RNA, in which base pairing between the complementary regions has not yet taken place. We suggest that this pairing is kinetically delayed by the intervening sequence, which contains the three hairpins of the cloverleaf. The model is mainly based on the observation that reducing the length of the intervening sequence reduces expression, whereas increasing the length has the opposite effect. In addition, further stabilization of the LDI by a stronger base pair does not lead to a decrease in A-protein synthesis. Such a decrease is predicted to occur if translation would be controlled by the equilibrium structure of the leader RNA. These and other observations fit a kinetic model of translational control by RNA folding.  相似文献   

13.
14.
p27Kip1 is a key cell-cycle regulator whose level is primarily regulated by the ubiquitin–proteasome degradation pathway. Its β1 subunit is one of seven β subunits that form the β-ring of the 20S proteasome, which is responsible for degradation of ubiquitinated proteins. We report here that the β1 subunit is up-regulated in oesophageal cancer tissues and some ovarian cancer cell lines. It promotes cell growth and migration, as well as colony formation. β1 binds and degrades p27Kip1directly. Interestingly, the lack of phosphorylation at Ser158 of the β1 subunit promotes degradation of p27Kip1. We therefore propose that the β1 subunit plays a novel role in tumorigenesis by degrading p27Kip1.  相似文献   

15.
16.
In the last couple of years, there has been increasing debate as to the presence and role of intermediate states on the folding pathways of several small proteins, including the 76-residue protein ubiquitin. Here, we present detailed kinetic studies to establish whether an intermediate state is ever populated during the folding of this protein. We show that the differences observed in previous studies are attributable to the transient aggregation of the protein during folding. Using a highly soluble construct of ubiquitin, which does not aggregate during folding, we establish the conditions in which an intermediate state is sufficiently stable to be observed by kinetic measurements.  相似文献   

17.
Nucleic acid structure and dynamics are known to be closely coupled to local environmental conditions and, in particular, to the ionic character of the solvent. Here we consider what role the discrete properties of water and ions play in the collapse and folding of small nucleic acids. We study the folding of an experimentally well-characterized RNA hairpin-loop motif (sequence 5'-GGGC[GCAA]GCCU-3') via ensemble molecular dynamics simulation and, with nearly 500 micros of aggregate simulation time using an explicit representation of the ionic solvent, report successful ensemble folding simulations with a predicted folding time of 8.8(+/-2.0) micros, in agreement with experimental measurements of approximately 10 micros. Comparing our results to previous folding simulations using the GB/SA continuum solvent model shows that accounting for water-mediated interactions is necessary to accurately characterize the free energy surface and stochastic nature of folding. The formation of the secondary structure appears to be more rapid than the fastest ionic degrees of freedom, and counterions do not participate discretely in observed folding events. We find that hydrophobic collapse follows a predominantly expulsive mechanism in which a diffusion-search of early structural compaction is followed by the final formation of native structure that occurs in tandem with solvent evacuation.  相似文献   

18.
Coeliac disease is an autoimmune-mediated disorder with both innate and adaptive immune components. The disease is triggered by dietary gluten, which provokes the development of a massive immune reaction leading to the destruction of the small-intestinal mucosal morphology and intestinal dysfunction. Besides the typical small-bowel symptoms extraintestinal manifestations may also arise in a subset of coeliac disease patients. In addition, gluten evokes the production of antibodies mainly targeting deamidated gluten peptides or transglutaminase 2. Although coeliac disease has traditionally been regarded as a T cell-mediated disorder, this review discusses the role of the gluten-induced disease-specific anti-transglutaminase 2-autoantibodies in the pathogenesis of the disease.  相似文献   

19.
d-Serine (0.05m) inhibited nitrification byAspergillus flavus in media containing either peptone, aspartate,a-alanine or -alanine as the sole nitrogen source. A similar inhibition was observed in an aspartate + peptone medium, but nitrate was formed in a -alanine + peptone medium in the presence of the inhibitor. Exceptionally high yields of nitrate were obtained in the -alanine + peptone medium. In replacement cultures,d-serine inhibited nitrification of aspartate but not of -alanine. Manometric studies indicated that aspartate was decarboxylated byA. flavus and that the reaction was inhibited byd-serine. In view of these results, it is suggested that aspartate is a precursor and -alanine is an intermediate in nitrification by this fungus.  相似文献   

20.
Alzheimer's disease (AD) is linked to the aberrant assembly of the amyloid β-protein (Aβ). The (21)AEDVGSNKGA(30) segment, Aβ(21-30), forms a turn that acts as a monomer folding nucleus. Amino acid substitutions within this nucleus cause familial forms of AD. To determine the biophysical characteristics of the folding nucleus, we studied the biologically relevant acetyl-Aβ(21-30)-amide peptide using experimental techniques (limited proteolysis, thermal denaturation, urea denaturation followed by pulse proteolysis, and electron microscopy) and computational methods (molecular dynamics). Our results reveal a highly stable foldon and suggest new strategies for therapeutic drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号