首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide (NO) plays an important role in the pathogenesis of neuronal injury during cerebral ischemia. The endothelial and neuronal isoforms of nitric oxide synthase (eNOS, nNOS) generate NO, but NO generation from these two isoforms can have opposing roles in the process of ischemic injury. While increased NO production from nNOS in neurons can cause neuronal injury, endothelial NO production from eNOS can decrease ischemic injury by inducing vasodilation. However, the relative magnitude and time course of NO generation from each isoform during cerebral ischemia has not been previously determined. Therefore, electron paramagnetic resonance spectroscopy was applied to directly detect NO in the brain of mice in the basal state and following global cerebral ischemia induced by cardiac arrest. The relative amount of NO derived from eNOS and nNOS was accessed using transgenic eNOS(-/-) or nNOS(-/-) mice and matched wild-type control mice. NO was trapped using Fe(II)-diethyldithiocarbamate. In wild-type mice, only small NO signals were seen prior to ischemia, but after 10 to 20 min of ischemia the signals increased more than 4-fold. This NO generation was inhibited more than 70% by NOS inhibition. In either nNOS(-/-) or eNOS(-/-) mice before ischemia, NO generation was decreased about 50% compared to that in wild-type mice. Following the onset of ischemia a rapid increase in NO occurred in nNOS(-/-) mice peaking after only 10 min. The production of NO in the eNOS(-/-) mice paralleled that in the wild type with a progressive increase over 20 min, suggesting progressive accumulation of NO from nNOS following the onset of ischemia. NOS activity measurements demonstrated that eNOS(-/-) and nNOS(-/-) brains had 90% and < 10%, respectively, of the activity measured in wild type. Thus, while eNOS contributes only a fraction of total brain NOS activity, during the early minutes of cerebral ischemia prominent NO generation from this isoform occurs, confirming its importance in modulating the process of ischemic injury.  相似文献   

2.
Nitric oxide (NO) exerts both, pro-apoptotic and anti-apoptotic actions and appears to be acritical factor inneuronal degenerative and regenerative processes. NO is synthesized from L-arginine by NO synthase occurring in three isoforms of (neuronal, nNOS; endothelial, eNOS; inducible, iNOS). In a mice sciatic nerve model the regenerative outcome was assessed when the endogenous NO supply was deficient by knocking out the respective NOS isoform and compared to that of wild type mice after nerve transection. In nNOS knock-out mice a delay in regeneration, preceded by slowedWallerian degeneration and a disturbed pruning of uncontrolled sprouts, was observed. This was associated with a delayed recovery of sensory and motor function. Additionally, deficiency of nNOS led after nerve cut to a substantial loss of small and medium-sized dorsal root ganglia neurons, spinal cord interneurons and, to a lesser extent, spinal cord motor neurons. A lack of iNOS resulted in a delayed Wallerian degeneration and impaired regenerative outcome without consequences for neuronal survival. A lack of eNOS was well tolerated, although a delay in nerve revascularization was observed. Thus, after peripheral nerve lesion, regular NOS activity is essential for cell survival and recovery with reference to the nNOS isoform.  相似文献   

3.
The medial region of the nucleus tractus solitarius (mNTS) is a key brain stem site controlling cardiovascular function, wherein ANG II modulates neuronal L-type Ca(2+) currents via activation of ANG II type 1 receptors (AT(1)R) and production of reactive oxygen species (ROS). ANG II type 2 receptors (AT(2)R) induce production of nitric oxide (NO), which may interact with ROS and modulate AT(1)R signaling. We sought to determine whether AT(2)R-mediated NO production occurs in mNTS neurons and, if so, to elucidate the NO source and the functional interaction with AT(1)R-induced ROS or Ca(2+) influx. Electron microscopic (EM) immunolabeling showed that AT(2)R and neuronal NO synthase (nNOS) are coexpressed in neuronal somata and dendrites receiving synapses in the mNTS. In the presence of the AT(1)R antagonist losartan, ANG II increased NO production in isolated mNTS neurons, an effect blocked by the AT(2)R antagonist PD123319, but not the angiotensin (1-7) antagonist D-Ala. Studies in mNTS neurons of nNOS-null or endothelial NOS (eNOS)-null mice established nNOS as the source of NO. ANG II-induced ROS production was enhanced by PD123319, the NOS inhibitor N(G)-nitro-l-arginine (LNNA), or in nNOS-null mice. Moreover, in the presence of losartan, ANG II reduced voltage-gated L-type Ca(2+) current, an effect blocked by PD123319 or LNNA. We conclude that AT(2)R are closely associated and functionally coupled with nNOS in mNTS neurons. The resulting NO production antagonizes AT(1)R-mediated ROS and dampens L-type Ca(2+) currents. The ensuing signaling changes in the NTS may counteract the deleterious effects of AT(1)R on cardiovascular function.  相似文献   

4.
In this study, we evaluated the differential influence of chronic treadmill training (30 m/min, 15% incline, 1 h/day, 5 days/wk) on nitric oxide (NO) production and NO synthase (NOS) isoform expression as well as 3-nitrotyrosine formation (footprint of peroxynitrite) both in limb (gastrocnemius) and ventilatory (diaphragm) muscles. A group of exercise-trained rats and a control group (no training) were examined after a 4-wk experimental period. Exercise training elicited an approximate fourfold rise in gastrocnemius NOS activity and augmented protein expression of the endothelial (eNOS) and neuronal (nNOS) isoforms of NOS to approximately 480% and 240%, respectively. Qualitatively similar but quantitatively smaller elevations in NOS activity and eNOS and nNOS expression were observed in the diaphragm. No detectable inducible NOS (iNOS) protein expression was found in any of the muscle samples. Training increased the intensity of 3-nitrotyrosine only in the gastrocnemius muscle. We conclude that whole body exercise training enhances both limb and ventilatory muscle NO production and that constitutive and not iNOS isoforms are responsible for increased protein tyrosine nitration in trained limb muscles.  相似文献   

5.
The interactions of neuronal nitric-oxide synthase (nNOS) with calmodulin (CaM) and mutant forms of CaM, including CaM-troponin C chimeras, have been previously reported, but there has been no comparable investigation of CaM interactions with the other constitutively expressed NOS (cNOS), endothelial NOS (eNOS), or the inducible isoform (iNOS). The present study was designed to evaluate the role of the four CaM EF hands in the activation of eNOS and iNOS. To assess the role of CaM regions on aspects of enzymatic function, three distinct activities associated with NOS were measured: NADPH oxidation, cytochrome c reduction, and nitric oxide (*NO) generation as assessed by the oxyhemoglobin capture assay. CaM activates the cNOS enzymes by a mechanism other than stimulating electron transfer into the oxygenase domain. Interactions with the reductase moiety are dominant in cNOS activation, and EF hand 1 is critical for activation of both nNOS and eNOS. Although the activation patterns for nNOS and eNOS are clearly related, effects of the chimeras on all the reactions are not equivalent. We propose that cytochrome c reduction is a measure of the release of the FMN domain from the reductase complex. In contrast, cytochrome c reduction by iNOS is readily activated by each of the chimeras examined here and may be constitutive. Each of the chimeras were co-expressed with the human iNOS enzyme in Escherichia coli and subsequently purified. Domains 2 and 3 of CaM contain important elements required for the Ca2+/CaM independence of *NO production by the iNOS enzyme. The disparity between cytochrome c reduction and *NO production at low calcium can be attributed to poor association of heme and FMN domains when the bound CaM constructs are depleted of Ca2+. In general cNOSs are much more difficult to activate than iNOS, which can be attributed to their extra sequence elements, which are adjacent to the CaM-binding site and associated with CaM control.  相似文献   

6.
In inflammatory, infectious, ischemic, and neurodegenerative pathologies of th central nervous system (CNS) glia become “activated” by inflammatory mediators, and express new proteins such as the inducible isoform of nitric oxide synthase (iNOS). Although these activated glia have beneficial roles, in vitro they potently kill cocultured neurons, and there is increasing evidence that they contribute to pathology in vivo. Nitric oxide (NO) from iNOS appears to be a key mediator of such glial-induced neuronal death. The high sensitivity of neurons to NO is partly due to NO causing inhibition of respiration, rapid glutamate release from both astrocytes and neurons, and subsequent excitotoxic death of the neurons. NO is a potent inhibitor of mitochondrial respiration, due to reversible binding of NO to cytochrome oxidase in competition with oxygen, resulting in inhibition of energy production and sensitization to hypoxia. Activated astrocytes or microglia cause a potent inhibition of respiration in cocultured neurons due to glial NO inhibiting cytochrome oxidase within the neurons, resulting in ATP depletion and glutamate release. In some conditions, glutamate-induced neuronal death can itself be mediated by N-methyl-d-aspartate (NMDA)-receptor activation of the neuronal isoform of NO synthase (nNOS) causing mitochondrial damage. In addition NO can be converted to a number of reactive derivatives such as peroxynitrite, NO2, N2O3, and S-nitrosothiols that can kill cells in part by inhibiting mitochondrial respiration or activation of mitochondrial permeability transition, triggering neuronal apoptosis or necrosis.  相似文献   

7.
As nitric oxide is a gas, it cannot be stored and has to be synthesized as required. This suggests that it could be released wherever nitric oxide synthase (NOS) is activated and due to its unstable state will react with appropriate targets at this site of production. In both dissociated dorsal root ganglion (DRG) cultures and in acutely isolated, but intact, DRG, treatment with capsaicin or bradykinin caused cGMP synthesis, which could be blocked by NOS inhibitors. The cGMP was synthesized in cells different from those expressing the neuronal isoform of NOS (nNOS). In dissociated cultures many of the cells stimulated to produce cGMP were neurons, whereas in isolated ganglia they were always satellite glia cells. Surprisingly, the satellite glia cells surrounding the nNOS-containing neurons did not contain cGMP. Following nerve section in adult rats, many axotomized ganglion neurons expressed nNOS. Again in these axotomized ganglia, most cGMP was expressed in the satellite glia surrounding nNOS-negative neurons. However, an nNOS-selective inhibitor reduced the cGMP present in these axotomized ganglia, suggesting that the cGMP synthesized is stimulated by NO (nitrogen monoxide) produced by nNOS. In both dissociated cultures and axotomized ganglia, nNOS-containing processes were observed close to cGMP-positive cells. These observations lead to the suggestion that NO acts in a paracrine fashion when stimulating the synthesis of cGMP and may not be synthesized at all sites containing nNOS.  相似文献   

8.
Nitric oxide (NO), produced by NO synthase (NOS), plays a critical role in multiple processes in the lung during the perinatal period. To better understand the regulation of pulmonary NO production in the developing primate, we determined the cell specificity and developmental changes in NOS isoform expression and action in the lungs of third-trimester fetal baboons. Immunohistochemistry in lungs obtained at 175 days (d) of gestation (term = 185 d) revealed that all three NOS isoforms, neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS), are primarily expressed in proximal airway epithelium. In proximal lung, there was a marked increase in total NOS enzymatic activity from 125 to 140 d gestation due to elevations in nNOS and eNOS, whereas iNOS expression and activity were minimal. Total NOS activity was constant from 140 to 175 d gestation, and during the latter stage (160-175 d gestation), a dramatic fall in nNOS and eNOS was replaced by a rise in iNOS. Studies done within 1 h of delivery at 125 or 140 d gestation revealed that the principal increase in NOS during the third trimester is associated with an elevation in exhaled NO levels, a decline in expiratory resistance, and greater pulmonary compliance. Thus, there are developmental increases in pulmonary NOS expression and NO production during the early third trimester in the primate that may enhance airway and parenchymal function in the immediate postnatal period.  相似文献   

9.
Abstract : The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor ( Z )-1-[(2-aminoethyl)- N -(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

10.
Changes in the nitric oxide (NO) system of the rat cerebral cortex were investigated by immunohistochemistry, immunoblotting, and NO synthase (NOS) activity assays in adult rats submitted for 30 min to hypoxia, in a hypobaric chamber at a simulated altitude of 38,000 ft (11000 m) (154.9 mm Hg). The cerebral cortex was studied after different survival times, 0 and 24 h, 5, 8, 15, and 30 days of reoxygenation. This situation led to morphological alterations in the large type I interneurons, as well as immunoreactive changes in the appearance and number of the small neurons (type II), both containing neuronal NOS (nNOS). Some of these small neurons showed immunoreactive cytoplasm and short processes; others, the more numerous during all reoxygenation periods, contained the immunoreactive product mainly related to a perinuclear ring. Ultrastructurally, these small neurons exhibited changes in nuclear structures as in the shape of the nuclear membrane, in the distribution of heterochromatin, and in the nucleolar morphology. The reaction product for nitrotyrosine, as a marker of protein nitration, showed modifications in distribution of the immunoreactive product. No expression was found for inducible NOS (iNOS). All these modifications were accompanied by increased nNOS and nitrotyrosine production as demonstrated by Western blotting and calcium-dependent activity, returning to control conditions after 30 days of reoxygenation, suggesting a reversible NO mechanism of action.  相似文献   

11.
Zhang F  Liao L  Ju Y  Song A  Liu Y 《Neurochemical research》2011,36(10):1903-1909
Nitric oxide (NO) participates in the neural pathways controlling the lower urinary tract (LUT). Expression of NO synthase (NOS) can be upregulated after spinal cord injury (SCI), and altered NOS activity may participate in resulting LUT dysfunction. To investigate distribution of NOS-immunoreactivity (NOS-IR) in neurons of rats following SCI and the possible effects of NOS inhibitors. Expression of neuronal and inducible NOS-IR in lumbosacral spinal cord was assessed in rats. Cystometry was performed to examine effects of intrathecal injection of NOS inhibitor. There was increased expression of neuronal NOS-IR after trauma. Maximum bladder capacity was increased by neuronal NOS (nNOS) inhibitors. Upregulation of nNOS may facilitate emergence of the spinal micturition reflex following SCI; nNOS inhibitor suppressed SCI-induced urinary incontinence by increasing bladder capacity. Our results indicate manipulation of NO production could help treat LUT dysfunction after SCI.  相似文献   

12.
In this work we have examined the appearance and distribution of nitric oxide synthase (NOS), with histochemical, immunohistochemical and biochemical methods, during development of the sea bass (Dicentrarchus labrax) gut. The data showed that both the calcium-calmodulin dependent neuronal isoform (nNOS) and calcium-independent inducible isoform (iNOS) are present in the larval gut of sea bass. The nNOS-immunoreactivity was present in the epithelial cells and enteric nerve cells of gut both in the 8-day-old specimens and in the 24-day-old-larvae. In the adult nNOS-immunoreactivity disappeared from epithelial cells, remaining in the wall intramural neurons and fibers. The iNOS-immunoreactivity was present in the epithelial cells of 24-day-old-larvae and was not detectable in the adult gut. Western blot analysis and determination of NOS activity also demonstrated the presence of the two NOS isoforms, nNOS and iNOS, in the gut of 24-day-old specimens. The presumably different roles played by the two isoforms of enzyme are discussed. The presence of nNOS isoform in the gut enteric neurons of the same larval stages of D. labrax in which we previously demonstrated the presence of substance P and Vasoactive Intestinal Polypeptide (VIP), may suggest that all these three components of the motility control system are already present in the larval phase. Nitric oxide (NO) may be also involved in the early immune response. The present results on the occurrence of iNOS isoform in epithelial gut cells of the same regions in which the gut-associated lymphoid tissue (GALT) will differentiate, may suggest for NO a role in early defence mechanisms, before the establishment of immune responses in GALT. Finally, the developmental and regional differences in nNOS and iNOS expression also suggest a regulatory role in development and differentiation of the sea bass gut.  相似文献   

13.
At glutamatergic synapses, the scaffolding protein PSD95 links the neuronal isoform of nitric-oxide synthase (nNOS) to the N-methyl-d-aspartate (NMDA) receptor. Phosphorylation of nNOS at serine 847 (Ser(847)) by the calcium-calmodulin protein kinase II (CaMKII) inhibits nNOS activity, possibly by blocking the binding of Ca(2+)-CaM. Here we show that the NMDA mediates a novel bidirectional regulation of Ser(847) phosphorylation. nNOS phosphorylated at Ser(847) colocalizes with the NMDA receptor at spines of cultured hippocampal neurons. Treatment of neurons with 5 microm glutamate stimulated CaMKII phosphorylation of nNOS at Ser(847), whereas excitotoxic concentrations of glutamate, 100 and 500 microm, induced Ser(847)-PO(4) dephosphorylation by protein phosphatase 1. Strong NMDA receptor stimulation was likely to activate nNOS under these conditions because protein nitration to form nitrotyrosine, a marker of nNOS activity, correlated in individual neurons with Ser(847)-PO(4) dephosphorylation. Of particular note, stimulation with low glutamate that increased phosphorylation of nNOS at Ser(847) could be reversed by subsequent high glutamate treatment which induced dephosphorylation. The reversibility of NMDA receptor-induced phosphorylation at Ser(847) by different doses of glutamate suggests two mechanisms with opposite effects: 1). a time-dependent negative feedback induced by physiological concentrations of glutamate that limits nNOS activation and precludes the overproduction of NO; and 2). a pathological stimulation by high concentrations of glutamate that leads to unregulated nNOS activation and production of toxic levels of NO. These mechanisms may share pathways, respectively, with NMDA receptor-induced forms of synaptic plasticity and excitotoxicity.  相似文献   

14.
15.
The aim of the study was to investigate the interaction between nitric oxygenase (NOS)/nitric oxide (NO) and heme oxygenase (HO)/carbon monoxide (CO) system in the pathogenesis of recurrent febrile seizures (FS). On a rat model of recurrent FS, the ultrastructure of hippocampal neurons was observed under electron microscopy, and expression of neuronal NOS (nNOS) in hippocampus and NO formation in plasma were examined after treatment with ZnPP-IX, an HO-1 inhibitor. In the ultrastructure of hippocampal neurons, the expression of HO-1 in hippocampus and CO formation in plasma were examined after treatment with L-NAME, a NOS inhibitor. We found that hippocampal neurons were injured after recurrent FS. The gene and protein expression of nNOS and HO-1 increased markedly in hippocampus in FS rats, while CO formation in plasma increased markedly and the concentration of NO in plasma increased slightly. ZnPP-IX could worsen the neuronal damage of recurrent FS rats. However, it further increased the expression of nNOS and endogenous production of NO obviously. L-NAME alleviated the neuronal damage of recurrent FS rats, but decreased the expression of HO-1 and CO formation. The results of this study suggested that endogenous NOS/NO and HO/CO systems might interact with each other and therefore play an important regulating role in recurrent FS brain damage.  相似文献   

16.
The effect of muscle activation on muscle nitric oxide (NO) production remains controversial. Whereas NO release increases in in vitro activated muscles and in vivo limb muscles, diaphragmatic NO synthase (NOS) activity declines after 3 h of inspiratory resistive loading (IRL). We tested in this study the hypotheses that acute IRL decreases diaphragmatic NO derivatives levels and reduces protein expression of neuronal (nNOS), endothelial (eNOS), and inducible (iNOS) NO synthases, as well as 3-nitrotyrosine formation. Anesthetized, tracheostomized, spontaneously breathing adult rats were subjected to IRL (50% of the maximum inspiratory pressure) for 1, 3, or 6 h. Quietly breathing rats served as controls. After 3 h of IRL, muscle eNOS and nNOS protein levels rose by 80 and 60% of control values, respectively. Whereas eNOS expression did not change any further, nNOS expression reached 550% of control values after 6 h of IRL. Strong iNOS protein expression was detected in the diaphragms after 6 h of IRL. Total NO derivatives levels in the diaphragm declined during IRL as a result of reduction in nitrate, nitrite, and nitrosothiols. Diaphragmatic protein tyrosine nitration decreased in response to IRL, and this reduction was mainly due to reduced tyrosine nitration of enolase and aldolase. We conclude that diaphragmatic NO derivatives levels decline in response to IRL and that the rise in diaphragmatic NOS protein expression may be a compensatory response designed to counterbalance the decline in NOS activity.  相似文献   

17.
Although evidence exists that nitric oxide (NO) mediates neuroendocrine secretion in mammals, the involvement of NO in the neuroendocrine regulation of non-mammalian vertebrates has yet to be investigated in detail. The present review conveys several recent data, suggesting that NO plays a modulatory role in the caudal neurosecretory system (CNSS) of teleosts. The presence and distribution of neuronal NO synthase (nNOS) was demonstrated in the CNSS of the Nile tilapia Oreochromis niloticus by means of NADPHd histochemistry, NOS immunohistochemistry, NOS immunogold electron microscopy, the citrulline assay for NOS activity and Western blot analysis. NO production by the caudal spinal cord homogenates was also evaluated by the oxyhemoglobin assay. On the whole, these findings indicate that caudal neurosecretory cells express NOS enzymes and presumably produce NO as a cotransmitter. Moreover, the comparison of the nNOS distribution with that of urotensins I and II (UI and UII) suggests that neurosecretory Dahlgren cells belong to two different functional subpopulations: a population of UI/UII secreting nitrergic neurons and a population of non-nitrergic neurons, which principally secrete UII. These results implicate NO as a putative modulator of the release of urotensins from the neurosecretory axon terminals. Therefore, like in mammals, NO appears to influence neuroendocrine secretion in teleosts.  相似文献   

18.
A water-soluble iron complex with N-dithiocarboxysarcosine (Fe-DTCS) has been developed as an ESR spin-trapping agent for NO and successfully applied to ESR imaging of endogenous NO production in mice. We attempted to measure NO produced by purified neuronal NO synthase (nNOS) by this method, but could not detect NO. We speculated that Fe-DTCS inhibits NOS activity. In fact, it markedly inhibited NOS activity with an IC50 value of 9.7 +/- 0.7 microM in the citrulline-formation assay. DTCS alone did not inhibit the activity. An iron complex with N-methyl-D-glucamine dithiocarbamate, a similar spin-trapping agent for NO, also inhibited the activity, with an IC50 value of 25.1 +/- 2.9 microM. Fe-DTCS suppressed cytochrome c and ferricyanide reductase activities of nNOS, and markedly increased nNOS-mediated NADPH oxidation. Concomitantly, it accelerated oxygen consumption caused by activated nNOS. These results suggest that the ESR spin-trapping agent Fe-DTCS inhibits NO synthesis by interfering with the physiological electron flow from NADPH to nNOS heme iron.  相似文献   

19.
目的探讨大鼠局灶性脑缺血再灌注后海马神经细胞一氧化氮合酶(NOS)的表达与神经细胞凋亡的关系及中药复方丹参的保护作用。方法采用大脑中动脉内栓线阻断法(MCAO)造成局灶性脑缺血再灌注模型。用原位细胞凋亡检测方法观察海马神经细胞凋亡;用免疫组织化学方法检测大鼠海马神经细胞(nNOS、iNOS)的表达并做图像分析。结果与假手术对照组比较,脑缺血再灌注2h后缺血侧海马CA1、CA3区神经细胞nNOS、iNOS表达升高,并出现神经细胞凋亡,随着再灌注时间的延长,神经细胞iNOS的表达明显增强,凋亡神经细胞数逐渐增多,至24h达高峰,但神经细胞nNOS的表达并未见明显增强。复方丹参保护组神经细胞nNOS、iNOS的表达和凋亡神经细胞数明显低于缺血再灌组(P<0.01)。结论脑缺血再灌注后缺血侧海马CA1、CA3区神经细胞nNOS的表达增强,iNOS的表达显著升高,使NO的形成增加,这可能是介导脑缺血再灌注后神经细胞凋亡的机制之一。复方丹参具有下调神经细胞nNOS、iNOS的表达,减少NO的生成,抑制细胞凋亡,减轻缺血再灌注对大鼠海马损伤的作用。  相似文献   

20.
It has been established that in the case of inducible NO synthase (NOS), a functionally active homodimer is assembled from the heme-deficient monomeric apo-NOS in vitro by the addition of heme, whereas the heme-deficient neuronal isoform (apo-nNOS) is at best only partially activated. In the current study we have discovered that reactive oxygen species, which can be removed by the addition of superoxide dismutase and catalase, destroy the heme and limit the activation of apo-nNOS in vitro. With the use of these improved conditions, we show for the first time that heme insertion is a rapid process that results in formation of a heme-bound monomeric nNOS that is able to form the ferrous-CO P450 complex but is unable to synthesize NO. A slow process requiring more than 90 min is required for dimerization and activation of this P450 intermediate to give an enzyme with a specific activity of approximately 1100 nmol of NO formed/min/mg of protein, similar to that of the native enzyme. Interestingly, the dimer is not SDS-resistant and is not the same dimer that forms in vivo. These studies indicate at least two intermediates in the assembly of nNOS and advance our understanding of the regulation of nNOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号