首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A link between vacuolation and fragmentation of Penicillium chrysogenum mycelia in stirred tank submerged fermentations is reported. Quantitative information on vocuolation and morphology was obtained by image analysis. In fed-batch fermentations the coincidence of the events of rapid vacuolation and the fall of the mean total and main hyphal lengths suggests that hyphal fragmentation is not necessarily due to "shear" alone. The physiological state of the hyphae, characterized by the proportions of vaccuoles, was found to have a significant influence on the breakage of mycelial hyphae, It was found that the fragmentation was greater when the hyphae became heavily vacuolated following nutrient limitation in the culture, i.e., during the switch from the rapid growth to the production phase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
It is well known that high-viscosity fermentation broth can lead to mixing and oxygen mass transfer limitations. The seemingly obvious solution for this problem is to increase agitation intensity. In some processes, this has been shown to damage mycelia, affect morphology, and decrease product expression. However, in other processes increased agitation shows no effect on productivity. While a number of studies discuss morphology and fragmentation at the laboratory and pilot scale, there are relatively few publications available for production-scale fungal fermentations. The goal of this study was to assess morphology and fragmentation behavior in large-scale, fed-batch, fungal fermentations used for the production of protein. To accomplish this, a recombinant strain of Aspergillus oryzae was grown in 80 m(3) fermentors at two different gassed, impeller power-levels (one 50% greater than the other). Impeller power is reported as energy dissipation/circulation function (EDCF) and was found to have average values of 29.3 +/- 1.0 and 22.0 +/- 0.3 kW m(-3) s(-1) at high and low power levels, respectively. In all batches, biomass concentration profiles were similar and specific growth rate was < 0.03 h(-1). Morphological data show hyphal fragmentation occurred by both shaving-off of external clump hyphae and breakage of free hyphae. The fragmentation rate constant (k(frag)), determined using a first-order model, was 5.90 and 5.80 h(-1) for high and low power batches, respectively. At the end of each batch, clumps accounted for only 25% of fungal biomass, most of which existed as small, sparsely branched, free hyphal elements. In all batches, fragmentation was found to dominate fungal growth and branching. We speculate that this behavior was due to slow growth of the culture during this fed-batch process.  相似文献   

3.
A method for measuring mechanical properties of Saccharopolyspora erythraea is reported with data from a batch fermentation. Briefly, hyphae were glued to the end of a tungsten filament mounted horizontally on a sensitive force transducer. Free ends of hyphae were trapped against a flat surface by a second probe. The force transducer and tungsten filament were then moved at a fixed rate, the hypha were strained, and the force resisting motion recorded. From these data the maximum force resisting motion is taken as the force at which breakage occurs. Hyphae from the mid-logarithmic phase of a simple batch fermentation on defined medium were found to have a breaking force of 890 +/- 160 nN (95% confidence), while stationary phase hyphae were weaker at 580 +/- 150 nN. Video recordings of the experiments allowed an approximation of breaking strain, which did not differ significantly between samples at 0.18 +/- 0.03. Electron microscopy was used to measure cell wall thickness, cell diameter, and hence cell wall cross-sectional area. The ultimate tensile strength was estimated to be 24 +/- 3 MPa with no difference between the two samples, the lower breaking force of the stationary phase hyphae being attributed to a thinner cell wall. Assuming a linear relationship between stress and strain, the elastic modulus was estimated to be 140 +/- 30 MPa. These values are comparable with other structural biological materials such as yeast cell walls and collagen.  相似文献   

4.
A methodology for the estimation of biomass for the penicillin fermentation using image analysis is presented. Two regions of hyphae are defined to describe the growth of mycelia during fermentation: (1) the cytoplasmic region, and (2) the degenerated region including large vacuoles. The volume occupied by each of these regions in a fixed volume of sample is estimated from area measurements using image analysis. Areas are converted to volumes by treating the hyphae as solid cylinders with the hyphal diameter as the cylinder diameter. The volumes of the cytoplasmic and degenerated regions are converted into dry weight estimations using hyphal density values available from the literature. The image analysis technique is able to estimate biomass even in the presence of nondissolved solids of a concentration of up to 30 gL(-1). It is shown to estimate successfully concentrations of mycelia from 0.03 to 38 gL(-1). Although the technique has been developed for the penicillin fermentation, it should be applicable to other (nonpellected) fungal fermentations.  相似文献   

5.
Streptomyces clavuligerus ATCC 20764 was grown from spore-inocuia on a glycerol, malt extract, bacteriological peptone medium in 5-L batch fermentations at 490, 990, and 1300 rpm. Dry cell weights, clavulanic acid production, and the morphological parameters main hyphal length, total hyphal length, number of tips, and hyphal growth unit were measured. Growth and productivity were hardly dependent on stirrer speed. After early growth fragmentation of long, highly branched mycelia to shorter, less branched fragments occurred. This was followed by regrowth and, at 1300 rpm, a second fragmentation phase. The effect of increasing stirrer speed was to accelerate the initial fragmentation phase. It was clearly possible to obtain the same biomass concentration and clavulanic acid liter, with different morphologies depending on stirrer speed. This shows that for this fermentation at least there is no direct link between morphology and productivity and, hence, that it might be possible to manipulate them independently to improve fermentor performance.  相似文献   

6.
Fragmentation of filamentous fungal hyphae depends on two phenomena: hydrodynamic stresses, which lead to hyphal breakage, and hyphal tensile strength, which resists breakage. The goal of this study was to use turbulent hydrodynamic theory to develop a correlation that allows experimental data of morphology and hydrodynamics to be used to estimate relative (pseudo) tensile strength (sigma(pseudo)) of filamentous fungi. Fed-batch fermentations were conducted with a recombinant strain of Aspergillus oryzae in 80 m(3) fermentors, and measurements were made of both morphological (equivalent hyphal length, L) and hydrodynamic variables (specific power input, epsilon; kinematic viscosity, v). We found that v increased over 100-fold during these fermentations and, hence, Kolmogorov microscale (lambda) also changed significantly with time. In the impeller discharge zone, where hyphal fragmentation is thought to actually take place, lambda was calculated to be 700-3500 microm, which is large compared to the size of typical fungal hyphae (100-300 microm). This result implies that eddies in the viscous subrange are responsible for fragmentation. Applying turbulent theory for this subrange, it was possible to calculate sigma(pseudo)from morphological and hydrodynamic measurements. Pseudo tensile strength was not constant but increased to a maximum during the first half and then decreased during the second half of each fermentation, presumably due to differences in physiological state. When a literature correlation for hyphal fragmentation rate (k(frag)) was modified by adding a term to account for viscosity and tensile strength, the result was better qualitative agreement with morphological data. Taken together, these results imply hyphal tensile strength can change significantly over the course of large-scale, fed-batch fungal fermentations and that existing fragmentation and morphology models may be improved if they accounted for variations in hyphal tensile strength with time.  相似文献   

7.
When the mycelia of Rosellinia necatrix encounter mycelia with a different genetic background, distinct barrage lines form. In this study, we observed hyphal interactions between compatible and incompatible R. necatrix pairs by means of light and electron microscopy. Although we observed perfect hyphal anastomosis in compatible pairs of isolates, the hyphae never anastomosed in incompatible pairs (i.e., the hyphae remained parallel or crossed over without merging). These behaviours appeared to result from the detection of or failure to detect one or more diffusible factors. The attraction to other hyphae in pairs of incompatible isolates was increased by supplementation of the growing medium with activated charcoal, although no anastomosis was observed and ultrastructural observation confirmed a lack of hyphal anastomosis. Programmed cell death (PCD) started with one of the two approaching hyphae. Heterochromatin condensation and genomic DNA fragmentation were not observed. Moreover, cell damage began with the tonoplast and continued with the plasma and nuclear membranes, suggesting that the PCD observed in heterogenic incompatibility of R. necatrix was a vacuole-mediated process.  相似文献   

8.
Currently, little is known about the mechanical properties of filamentous fungal hyphae. To study this topic, atomic force microscopy (AFM) was used to measure cell wall mechanical properties of the model fungus Aspergillus nidulans. Wild type and a mutant strain (deltacsmA), lacking one of the chitin synthase genes, were grown in shake flasks. Hyphae were immobilized on polylysine-coated coverslips and AFM force--displacement curves were collected. When grown in complete medium, wild-type hyphae had a cell wall spring constant of 0.29 +/- 0.02 N/m. When wild-type and mutant hyphae were grown in the same medium with added KCl (0.6 M), hyphae were significantly less rigid with spring constants of 0.17 +/- 0.01 and 0.18 +/- 0.02 N/m, respectively. Electron microscopy was used to measure the cell wall thickness and hyphal radius. By use of finite element analysis (FEMLAB v 3.0, Burlington, MA) to simulate AFM indentation, the elastic modulus of wild-type hyphae grown in complete medium was determined to be 110 +/- 10 MPa. This decreased to 64 +/- 4 MPa for hyphae grown in 0.6 M KCl, implying growth medium osmotic conditions have significant effects on cell wall elasticity. Mutant hyphae grown in KCl-supplemented medium were found to have an elastic modulus of 67 +/- 6 MPa. These values are comparable with other microbial systems (e.g., yeast and bacteria). It was also found that under these growth conditions axial variation in elastic modulus along fungal hyphae was small. To determine the relationship between composition and mechanical properties, cell wall composition was measured by anion-exchange liquid chromatography and pulsed electrochemical detection. Results show similar composition between wild-type and mutant strains. Together, these data imply differences in mechanical properties may be dependent on varying molecular structure of hyphal cell walls as opposed to wall composition.  相似文献   

9.
A comparison was made of the morphology and growth kinetics of hyphae of differentiated and undifferentiated mycelia of Neurospora crassa. Undifferentiated mycelia were formed during exponential growth on solid media or submerged culture. Hyphae at the margin of differentiated mycelia (colonies) differed from undifferentiated mycelia in diameter, extension rate, extension zone length, and intercalary and apical compartment length. The mean hyphal extension rate (E) of an undifferentiated mycelium was a function of the length of the mycelium's hyphal growth unit (G) and the organism's specific growth rate (alpha). Thus, E=Galpha.  相似文献   

10.
In carbon-depleted cultures of Penicillium chrysogenum, age-related chitinases were shown to play a crucial role in both autolysis and fragmentation as indicated by in vivo enzyme inhibition experiments using allosamidin. This pseudotrisaccharide even hindered significantly the outgrowth of new hyphal tips from the surviving yeastlike fragments after glucose supplementation. The antifungal effect of allosamidin on autolyzing P. chrysogenum mycelia was fungistatic rather than fungicidal. In growing hyphae, membrane-bound microsomal chitinase zymogen(s) were detected, which may be indicative of some compartmentalization of these hydrolases. Later, during autolysis, no zymogenic chitinase was detected in any enzyme fraction studied, including microsomes. These observations may explain the different sensitivity of growing and autolyzing mycelia to allosamidin. Chitinases taking part in the age-related fragmentation of hyphae and the outgrowth of surviving hyphal fragments seem to be potent targets for future antifungal drug research.  相似文献   

11.
12.
Microcosms with Pinus sylvestris seedlings in symbiosis with the fungus mycorrhizal Paxillus involutus were established, and atomic force microscopy (AFM) was used to characterise plant photosynthate-driven fungal interactions with mineral surfaces. Comparison of images of the same area of the minerals before and after mycorrhizal fungal colonization showed extensive growth of hyphae on three different mineral surfaces – hornblende, biotite and chlorite. A layer of biological exudate, or biolayer, covered the entire mineral surface and was composed of globular features of diameter 10–80 nm, and the morphology of the biolayer differed among mineral types. Similar-sized components were found on the fungal hyphae, but with a more elongated profile. Biolayer and hyphae surfaces both appeared to be hydrophobic with the hyphal surfaces yielding higher maximal adhesive interactions and a wider range of values: the mean (± SE) adhesive forces were 2.63 ± 0.03 and 3.46 ± 0.18 nN for biolayer and hypha, respectively. The highest adhesion forces are preferentially localized at the hyphal surface above the Spitzenkörper region and close to the tip, with a mean interaction force in this locality of 5.24 ± 0.49 nN. Biolayer thickness was between 10 and 40 nm. The underlying mineral was easily broken up by the tip, in contrast to the native mineral. These observations of mineral surfaces colonised by mycorrhizal fungus demonstrate how fungal hyphae are able to form a layer of organic exudates, or biolayer, and its role in hyphal attachment and potential weathering of ferromagnesian silicates, which may supply nutrients to the plant.  相似文献   

13.
We observed anastomosis between hyphae originating from the same spore and from different spores of the same isolate of the arbuscular mycorrhizal fungi Glomus mosseae, Glomus caledonium, and Glomus intraradices. The percentage of contacts leading to anastomosis ranged from 35 to 69% in hyphae from the same germling and from 34 to 90% in hyphae from different germlings. The number of anastomoses ranged from 0.6 to 1.3 per cm (length) of hyphae in mycelia originating from the same spore. No anastomoses were observed between hyphae from the same or different germlings of Gigaspora rosea and Scutellospora castanea; no interspecific or intergeneric hyphal fusions were observed. We monitored anastomosis formation with time-lapse and video-enhanced light microscopy. We observed complete fusion of hyphal walls and the migration of a mass of particles in both directions within the hyphal bridges. In hyphal bridges of G. caledonium, light-opaque particles moved at the speed of 1.8 +/- 0.06 microm/s. We observed nuclear migration between hyphae of the same germling and between hyphae belonging to different germlings of the same isolate of three Glomus species. Our work suggests that genetic exchange may occur through intermingling of nuclei during anastomosis formation and opens the way to studies of vegetative compatibility in natural populations of arbuscular mycorrhizal fungi.  相似文献   

14.
The effects of varying inoculum age and production scale upon the morphology and viability of Streptomyces clavuligerus were studied by analyzing visible and fluorescent light images acquired throughout pilot-plant and pre-industrial scale fermentations. Changes in production scale reveal that in 5 m3 fermentors, the maximum hyphal area obtained is double the value obtained in 0.5 m3 fermentors. It is probably due to the higher shear stresses acting upon hyphae in the 0.5 m3 fermentor caused by higher tip speeds observed in these. The morphological quantification based on elongation and branching rates allowed fermentations to be pattern classified into distinct physiological time zones namely elongation, branching, fragmentation, etc. The general pattern observed for fermentations inoculated with late exponential phase inocula was similar to the pattern of fermentations run with stationary phase inocula except that both the elongation and branching periods started earlier in the former case. Using the available staining technique and image acquisition system, the viability seemed to be generally high and constant throughout the time course of all the studied fermentations.An erratum to this article can be found at  相似文献   

15.
Both parallel fermentations with Aspergillus awamori (CBS 115.52) and a literature study on several fungi have been carried out to determine a relation between fungal morphology and agitation intensity. The studied parameters include hyphal length, pellet size, surface structure or so-called hairy length of pellets, and dry mass per-wet-pellet volume at different specific energy dissipation rates. The literature data from different strains, different fermenters, and different cultivation conditions can be summarized to say that the main mean hyphal length is proportional to the specific energy dissipation rate according to a power function with an exponent of -0.25 +/- 0.08. Fermentations with identical inocula showed that pellet size was also a function of the specific energy dissipation rate and proportional to the specific energy dissipation rate to an exponent of -0.16 +/- 0.03. Based on the experimental observations, we propose the following mechanism of pellet damage during submerged cultivation in stirred fermenters. Interaction between mechanical forces and pellets results in the hyphal chip-off from the pellet outer zone instead of the breakup of pellets. By this mechanism, the extension of the hyphae or hair from pellets is restricted so that the size of pellets is related to the specific energy dissipation rate. Hyphae chipped off from pellets contribute free filamentous mycelia and reseed their growth. So the fraction of filamentous mycelial mass in the total biomass is related to the specific energy dissipation rate as well.To describe the surface morphology of pellets, the hyphal length in the outer zone of pellets or the so-called hairy length was measured in this study. A theoretical relation of the hairy length with the specific energy dissipation rate was derived. This relation matched the measured data well. It was found that the porosity of pellets showed an inverse relationship with the specific energy dissipation rate and that the dry biomass per-wet-pellet volume increased with the specific energy dissipation rates. This means that the tensile strength of pellets increased with the increase of specific energy dissipation rate. The assumption of a constant tensile strength, which is often used in literature, is then not valid for the derivation of the relation between pellet size and specific energy dissipation rate. The fraction of free filamentous mycelia in the total biomass appeared to be a function of the specific energy dissipation in stirred bioreactors. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 715-726, 1997.  相似文献   

16.
Optical tweezers have been little used in experimental studies on filamentous fungi. We have built a simple, compact, easy-to-use, safe and robust optical tweezer system that can be used with brightfield, phase contrast, differential interference contrast and fluorescence optics on a standard research grade light microscope. We have used this optical tweezer system in a range of cell biology applications to trap and micromanipulate whole fungal cells, organelles within cells, and beads. We have demonstrated how optical tweezers can be used to: unambiguously determine whether hyphae are actively homing towards each other; move the Spitzenkörper and change the pattern of hyphal morphogenesis; make piconewton force measurements; mechanically stimulate hyphal tips; and deliver chemicals to localized regions of hyphae. Significant novel experimental findings from our study were that germ tubes generated significantly smaller growth forces than leading hyphae, and that both hyphal types exhibited growth responses to mechanical stimulation with optically trapped polystyrene beads. Germinated spores that had been optically trapped for 25 min exhibited no deleterious effects with regard to conidial anastomosis tube growth, homing or fusion.  相似文献   

17.
An image analysis method is described for the characterization of empty (autolyzed and inactive) regions within the mycelia of filamentous fungi. It extends a previous method that characterized only regions filled with cytoplasm or vacuoles (i.e., the active biomass). The method is semiautomatic, requiring some manual editing before automated measurements. When the method was used for samples from a batch fermentation of an industrial strain of Penicillium chrysogenum, the empty regions were observed to constitute up to 15% (by projected area) of the biomass during the growth phase. After nutrient exhaustion, however, the proportion of empty regions rose rapidly, eventually representing more than 50% of the biomass by the end of fermentation. The increase in the percentage of empty regions coincided with a decrease in biomass (as measured by dry cell weight) and a fall in penicillin titre. Further morphological analysis revealed that fragmentation of mycelia, particularly clumps, coincided with increases in the levels of empty regions. This new image analysis method gave additional information on hyphal differentiation and a measure of autolysis. It was also a useful indicator of the processes leading to autolysis.  相似文献   

18.
Effect of L-amino acids on Mucor rouxii dimorphism.   总被引:1,自引:0,他引:1       下载免费PDF全文
Mucor rouxii organisms growing aerobically and exponentially on a well-defined minimal medium are able to differentiate as yeasts or as mycelia, depending on the amino acid as the nitrogen source. When certain amino acids were used as the nitrogen source, spores differentiated only as hyphae, whereas other amino acids gave rise to other morphological forms having different ratios of yeasts to hyphae. In both hyphal and yeast cultures, an aerobic metabolism was predominant, as shown by determining several metabolic parameters such as oxygen tension, glucose consumption, ethanol production, and CO2 release. A complete conversion of yeasts to hyphae was obtained by the appropriate change in the amino acid used as nitrogen source. By preparing spheroplasts from mycelial cultures and transferring them to media with amino acids that induce yeast formation, a 50% yield in the reverse transformation was achieved. A correlation between the change in pH of the medium and cell morphology was observed in different growth conditions. Decrease in the pH of the medium preceded the appearance of hyphae. Also, when the initial pH of the medium was increased, aspartate-containing cultures developed mainly as mycelia, instead of yeasts, with a corresponding decrease in the final pH.  相似文献   

19.
Accurate estimates of mycelial exudation in time and space are crucial for the assessment of ectomycorrhizal involvement in biogeochemical processes. Knowledge of exudation from mycelia of ectomycorrhizal fungi is still limited, especially for fungi in symbiosis with a host. Pinus sylvestris seedlings colonized by Hebeloma crustuliniforme were grown in aseptic multicompartment dishes. This novel system enabled identification of exudates originating only from extramatrical mycelium. At harvest, hyphal density and numbers were estimated using microscopic imaging. A fractal geometric approach was adopted for calculation of exudation rates. The main compounds identified were oxalate and ferricrocin. The exudation rate for oxalate was 19 +/- 3 fmol per hyphal tip h(-1) (mean +/- standard error of the mean) or 488 +/- 95 fmol hyphal mm(-2) h(-1). Ferricrocin rates were approx. 10 000 times lower. The fractal dimension (D) of the mycelia was 1.4 +/- 0.1, suggesting an explorative growth. Potassium nutrition was a significant regulatory factor for ferricrocin but not oxalate. The results suggest that hyphal exudation may alter the chemical conditions of soil microsites and affect mineral dissolution. Calculations also indicated that oxalate exudation may be a significant carbon sink.  相似文献   

20.
In this paper we present a mathematical model for estimating external mycelium growth of arbuscular mycorrhizal fungi and its effect on root uptake of phosphate (P). The model describes P transport in soil and P uptake by both root and fungi on the single root scale. We investigate differences in soil P depletion and overall P influx into a mycorrhizal root by assuming that different spatial regions of mycelia are active in P uptake. When all external hyphae contribute to P uptake, overall uptake is dominated by the fungus and the most effective growth pattern appears to be the one using a high level of anastomosis. The same is true when only the proportion of external hyphae assumed to be active contributes to uptake. When uptake is restricted to the tips, hyphal contribution to overall P uptake is less dominant; the most effective growth pattern appears to be the one characterised by nonlinear branching where branching stops at a given maximal hyphal tip density. Comparison to measured P depletion in the literature suggests that the scenario where active hyphae are contributing to P uptake is likely to fit the data best. These quantitative predictions promote our understanding of the mycorrhizal symbiosis and its role in plant P nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号