首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engineering 2,4-D resistance into cotton   总被引:18,自引:0,他引:18  
Summary To reduce damage by drift-levels of the herbicide 2,4-dichlorophenoxyacetic acid, we have engineered the 2,4-D resistance trait into cotton (Gossypium hirsutum L.). The 2,4-D monooxygenase gene tfdA from Alcaligenes eutrophus plasmid pJP5 was isolated, modified and expressed in transgenic tobacco and cotton plants. Analyses of the transgenic progeny showed stable transmission of the chimeric tfdA gene and production of active 2,4-D monooxygenase. Cotton plants obtained were tolerant to 3 times the field level of 2,4-D used for wheat, corn, sorghum and pasture crops.  相似文献   

2.
We developed a highly efficient transformation protocol for the PEG-mediated direct transfer of plasmid DNA into protoplasts of haploid Datura innoxia. Vectors harbouring a neomycin phosphotransferase II gene or a hygromycin B phosphotransferase gene under the control of different promoters were used in the transformation experiments. Various amounts of plasmid DNA were applied without any carrier DNA to show the direct influence of the plasmid DNA concentration on the transformation efficiency. Approximately 95% of the selected calli were regenerated to plants; 20% of them remained haploid. Total DNA of different transgenic plants was analysed with regard to the integration pattern of the plasmid DNA. Plants carrying only one or two copies of the vector DNA were observed as well as individuals with multi-copy integration (up to ten or more copies).Abbreviations ATF/RTF absolute/relative transformation frequency - BAP 6-benzylaminopurine - CaMV cauliflower mosaic virus - CTAB N-cetyl-N,N,N-trimethyl-ammonium bromide - HPT hygromycin B phosphotransferase gene - PEG polyethyleneglycol - MES 2-(N-morpholino) ethanesulfonic acid - NPT II neomycin phosphotransferase II gene  相似文献   

3.
编码苯基香豆满苄基醚还原酶(phenylcoumaran benzylic ether reductase,PCBER)的基因PCBER属于PIP亚家族,是苯丙烷代谢途径中参与木脂素合成的关键基因。该研究构建了棉花GhPCBER基因的植物过表达载体并转化拟南芥,同时构建了VIGS(virus induced gene silencing,病毒诱导的基因沉默)载体转化棉花,采用实时荧光定量PCR技术对GhPCBER基因在不同组织中的表达进行分析;对野生型和转基因植株茎叶组织中的木质素和木脂素含量进行测定分析。结果表明:(1)成功构建了GhPCBER植物过表达载体pGWB17-GhPCBRE以及基因沉默重组载体pTRV2-GhPCBER;经遗传转化获得6株转棉花GhPCBER基因抗性拟南芥植株,同时获得15株GhPCBER基因沉默棉花植株(5株为一组)。(2)PCR检测表明,6株转基因拟南芥均为过表达株系,其中株系1、2、3相对表达量更高,且在茎、叶组织中的表达量分别较野生型提高了7~14倍和6~16倍,表明GhPCBER基因成功在拟南芥中过表达;GhPCBER基因沉默棉花植株的茎、叶组织中的表达量分别比野生型棉株约下降12%和26%,表明烟草脆裂病毒(TRV)体系(pTRV2-GhPCBER)成功抑制了GhPCBER基因的表达。(3)转GhPCBER基因拟南芥茎、叶中木质素和木脂素含量较野生型均显著降低;GhPCBER基因沉默棉花植株茎、叶中木质素和木脂素含量较野生型均极显著降低;组织化学染色观察发现GhPCBER基因沉默棉花植株茎秆颜色明显比野生型染色浅,也证明沉默基因棉花植株茎秆中的木质素含量减少。(4)苯丙烷代谢通路中8个相关基因的实时荧光定量PCR分析发现,过表达或抑制GhPCBRE基因均会导致苯丙烷代谢途径发生重新定向。  相似文献   

4.
Summary Genetic transformation systems have been established for Brassica nigra (cv. IC 257) by using an Agrobacterium binary vector as well as by direct DNA uptake of a plasmid vector. Both the type of vectors carried nptII gene and gus gene. For Agrobacterium mediated transformation, hypocotyl tissue explants were used, and up to 33% of the explants produced calli on selection medium. All of these expressed B-glucuronidase gene on histochemical staining. Protoplasts isolated from hypocotyl tissues of seedlings could be transformed with a plasmid vector by FEG mediated uptake of vector DNA. A number of fertile kanamycin resistant plants were obtained using both the methods, and their transformed nature was confirmed by Southern blot analysis and histochemical staining for GUS. Backcrossed and selfed progenies of these transformed plants showed the presence of npt and gus genes.  相似文献   

5.
Cotton (Gossypium hirsutum L.) cotyledon tissues have been efficiently transformed and plants have been regenerated. Cotyledon pieces from 12-day-old aseptically germinated seedlings were inoculated with Agrobacterium tumefaciens strains containing avirulent Ti (tumor-inducing) plasmids with a chimeric gene encoding kanamycin resistance. After three days cocultivation, the cotyledon pieces were placed on a callus initiation medium containing kanamycin for selection. High frequencies of transformed kanamycin-resistant calli were produced, more than 80% of which were induced to form somatic embryos. Somatic embryos were germinated, and plants were regenerated and transferred to soil. Transformation was confirmed by opine production, kanamycin resistance, immunoassay, and DNA blot hybridization. This process for producing transgenic cotton plants facilitates transfer of genes of economic importance to cotton.  相似文献   

6.
Gene isolation from plants by positional cloning frequently requires several rounds of transformation. To reduce the resources invested and to accelerate the process, we have used large DNA fragments in transformation experiments, followed by analysis of transgenic plants to assess functional complementation. Specifically, the transformation of potato with DNA from the 106 kb BAC plasmid BA87d17 is described. The large fragment was introduced into the potato genome by biolistic transformation, while attempting to clone the R1 gene conferring a race specific resistance to Phytophthora infestans. Thirty-one kanamycin resistant plants were regenerated of which thirteen showed the necrotic lesions typical for the hypersensitive response after infection with the incompatible P. infestans race 4, which carries the avirulence gene Avr1. The successful complementation supported the location of the R1 gene in the BAC insertion of the BA87d17 plasmid. Based on PCR and Southern gel blot analysis, both complete and incomplete integrations of the large construct into the recipient genome were demonstrated.  相似文献   

7.
Summary 2,4-Dichlorophenoxyacetic acid (2,4-D) resistant plants of transgenic cotton (Gossypium hirsutum L.) were produced using Agrobacterium tumefaciens containing a plasmid carrying the neomycin phosphotransferase II (npt II) and 2,4-D monooxygenase (tfd A) genes. An in vitro assay was performed to determine the sensitivity of seed germination, and the growth of seedlings of transgenic and non-transgenic cotton to various concentrations of kanamycin and 2,4-D. The results indicated that kanamycin caused the cotyledons of non-transgenic plants to turn white, but transgenic plants grew normally. Seed germination and seedling growth of non-transgenic plants were strongly inhibited by 2,4-D, but only slightly for transgenic plants. Transgenic plants and non-transgenic plants can be clearly distinguished by the use of 2 mg l−1 2,4-D in seed germination medium. There was a high correlation between the response of seed germination and the growth of seedlings to kanamycin or 2,4-D, based on the germination ration, albino ratio, dry weight or fresh weight. On this basis, we development a rapid method for identifying transgenic plants that has been verified in the field. These findings will allow identification of cotton transformants at an early stage of plant development, saving time and improving cultivars containing the 2,4-D resistance trait.  相似文献   

8.
A silicon carbide whisker-mediated gene transfer system with recovery of fertile and stable transformants was developed for cotton (Gossypium hirsutum L.) cv. Coker-312. Two-month-old hypocotyl-derived embryogenic/non-embryogenic calli at different days after subculture were treated with silicon carbide whiskers for 2 min in order to deliver pGreen0029 encoding GUS gene and pRG229 AVP1 gene, encoding Arabidopsis vacuolar pyrophosphatase, having neomycin phosphotransferaseII (nptII) genes as plant-selectable markers. Three crucial transformation parameters, i.e., callus type, days after subculture and selection marker concentration for transformation of cotton calli were evaluated for optimum efficiency of cotton embryogenic callus transformation giving upto 94% transformation efficiency. Within six weeks, emergence of kanamycin-resistant (kmr) callus colonies was noted on selection medium. GUS and Southern blot analysis showed expression of intact and multiple transgene copies in the transformed tissues. Kanamycin wiping of leaves from T1, T2, and T3 progeny plants revealed that transgenes were inherited in a Mendelian fashion. Salt treatment of T1 AVP1 transgenic cotton plants showed significant enhancement in salt tolerance as compared to control plants. Thus far, this is first viable physical procedure after particle bombardment available for cotton that successfully can be used to generate fertile cotton transformants.  相似文献   

9.
Glycine betaine is an osmoprotectant that plays an important role and accumulates rapidly in many plants during salinity or drought stress. Choline monooxygenase (CMO) is a major catalyst in the synthesis of glycine betaine. In our previous study, a CMO gene (AhCMO) cloned from Atriplex hortensis was introduced into cotton (Gossypium hirsutum L.) via Agrobacterium mediation to enhance resistance to salinity stress. However, there is little or no knowledge of the salinity tolerance of the transgenic plants, particularly under saline-field conditions. In the present study, two transgenic AhCMO cotton lines of the T3 generation were used to study the AhCMO gene expression, and to determine their salinity tolerance in both greenhouse and field under salinity stress. Molecular analysis confirmed that the transgenic plants expressed the AhCMO gene. Greenhouse study showed that on average, seedlings of the transgenic lines accumulated 26 and 131% more glycine betaine than those of non-transgenic plants (SM3) under normal and salt-stress (150 mmol l−1 NaCl) conditions, respectively. The osmotic potential, electrolyte leakage and malondialdehyde (MDA) accumulation were significantly lower in leaves of the transgenic lines than in those of SM3 after salt stress. The net photosynthesis rate and Fv/Fm in transgenic cotton leaves were less affected by salinity than in non-transgenic cotton leaves. Therefore, transgenic cotton over-expressing AhCMO was more tolerant to salt stress due to elevated accumulation of glycine betaine, which provided greater protection of the cell membrane and photosynthetic capacity than in non-transgenic cotton. The seed cotton yield of the transgenic plants was lower under normal conditions, but was significantly higher than that of non-transgenic plants under salt-stressed field conditions. The results indicate that over-expression of AhCMO in cotton enhanced salt stress tolerance, which is of great value in cotton production in the saline fields.  相似文献   

10.
Li X  Wang XD  Zhao X  Dutt Y 《Plant cell reports》2004,22(9):691-697
A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene -glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.Communicated by D. Bartels  相似文献   

11.
该研究利用海岛棉‘新海21’和陆地棉ND203以及模式植物拟南芥,通过转基因及荧光定量检测等方法探究海岛棉GbHCT13基因(GenBank 登录号MW048849)在纤维发育中的功能。结果显示:(1)成功构建重组载体pCAMBIA3301 GbHCT13,经农杆菌介导法转化、除草剂抗性基因筛选、荧光定量检测方法鉴定获得转GbHCT13基因拟南芥T3代植株4株;qRT PCR检测表明,转基因植株中GbHCT13基因表达量较野生型极显著增加。(2)转基因拟南芥过表达GbHCT13基因使植株同一时期的生长较野生型旺盛,株形、叶片数、抽薹数和茎秆表皮毛数量均与野生型存在差异;组织化学分析发现,转GbHCT13基因的拟南芥较野生型茎秆初生木质部生长活跃,导管增粗,次生木质部导管细胞壁横截面积变大,但髓质细胞无明显变化;过表达GbHCT13使拟南芥中木质素合成途径基因发生不同程度改变,其中CADCCoAOMTPAL和4CLGbHCT13基因的表达呈正相关。(3)经大田筛选、分子鉴定,成功获得转GbHCT13基因棉花植株3株;转GbHCT13基因棉花的棉纤维伸长率增加,纤维强度增大;沉默GbHCT13基因使棉花植株木质素含量降低,茎秆表皮毛数量减少,木质部导管细胞数量减少,导管细胞壁中木质素沉积量降低,而棉株并未发生株高上的明显矮化现象,且木质素合成通路中的CADCCoAOMTCCRPAL 4个基因的表达均呈降低趋势,说明抑制GbHCT13使得棉花生长代谢受阻,影响纤维发育起始。研究表明,GbHCT13基因能影响棉花植株中木质素合成从而调控纤维的生长发育,其功能与GbHCT13基因在模式植物拟南芥中的基本一致。  相似文献   

12.
Transgenic Bt cotton NewCott 33B and transgenic tfd A cotton TFD were chosen to evaluate pollen dispersal frequency and distance of transgenic cotton (Gossypium hirsutum L.) in the Huanghe Valley Cotton-producing Zone, China. The objective was to evaluate the efficacy of biosafety procedures used to reduce pollen movement. A field test plot of transgenic cotton (6×6 m) was planted in the middle of a nontransgenic field measuring 210×210 m. The results indicated that the pollen of Bt cotton or tfd A cotton could be dispersed into the environment. Out-crossing was highest within the central test plot where progeny from nontransgenic plants, immediately adjacent to transgenic plants, had resistant plant progeny at frequencies up to 10.48%. Dispersal frequency decreased significantly and exponentially as dispersal distance increased. The flow frequency and distance of tfd A and Bt genes were similar, but the pollen-mediated gene flow of tfd A cotton was higher and further to the transgenic block than that of Bt cotton (χ2 = 11.712, 1 degree of freedom, p<0.001). For the tfd A gene, out-crossing ranged from 10.13% at 1 m to 0.04% at 50 m from the transgenic plants. For the Bt gene, out-crossing ranged from 8.16% at 1 m to 0.08% at 20 m from the transgenic plants. These data were fit to a power curve model: y=10.1321x −1.4133 with a correlation coefficient of 0.999, and y=8.0031x −1.483 with a correlation coefficient of 0.998, respectively. In this experiment, the farthest distance of pollen dispersal from transgenic cotton was 50 m. These results indicate that a 60-m buffer zone would serve to limit dispersal of transgenic pollen from small-scale field tests.  相似文献   

13.
Summary The maize transposable element Ac has been introduced into potato via the T-DNA (transferred DNA) of Agrobacterium tumefaciens. Ac was inserted within the untranslated leader region of a neomycin phosphotransferase II (NPT-II) gene such that excision restored NPT-II activity. Two approaches to monitor Ac excision were used. (i) Using an Agrobacterium strain harbouring plasmid pGV3850::pKU3, leaf discs were selected on kanamycin (Km) after exposure to Agrobacterium. (ii) Using a strain containing plasmid pGV3850HPT::pKU3, the leaf discs were selected on hygromycin (Hm) and the resulting shoots were checked for NPT-II expression. Thirteen kanamycin resistant shoots transformed with pGV3850::pKU3 were isolated, suggesting that Ac had excised from the NPT-II gene. Out of 43 hygromycin resistant shoots transformed with pGV3850HPT::pKU3, 22 expressed the NPT-II gene, indicating that Ac had undergone excision in approximately 50% of the hygromycin resistant shoots. Southern analysis revealed that all kanamycin resistant plants contained the DNA restriction fragments expected when Ac excises from the NPT-II gene. The presence of Ac at new locations within the genomic DNA of several transformants was also detected.  相似文献   

14.
Two cotton genotypes, Simian 3 (SM 3) and WC, were co-transformed using a mixture of four Agrobacterium tumefaciens cultures of strain LBA4404, each carrying a plasmid harboring the following genes, Bt + sck (for Bacillus thuringenesis protein and modified Cowpea trypsin inhibitor), bar (for glufosinate), keratin, and fibroin. The frequency of callus induction, embryogenesis, and plant regeneration were notably different between the two genotypes. However, there were no differences between the two genotypes for number of plantlets carrying multiple gene copies of different gene combinations as well as transformation frequency for different gene combinations. PCR analysis indicated that more than 80% of plantlets carried the nptII gene for kanamycin resistance. Overall, the co-transformation frequency of two or more genes was about 35%. Southern blot analysis confirmed integration of target genes into the cotton genome, and the number of copies of the transgene(s) varied from one to four. Multiple transgene expression was confirmed by RT-PCR analysis in some transgenic lines. Further analysis of T1 plants demonstrated that multiple transgenes were inherited and expressed in progenies. Fei-Fei Li and Shen-Jie Wu are joint first authors.  相似文献   

15.
以质粒pMCB30为模板,扩增GFP基因,连接到载体pCMBIA2300-35S-OCS上,构建过量表达载体p35S:GFP,将其转入农杆菌GV3101.通过农杆菌介导法将p35S:GFP载体分别转入新疆特色植物小拟南芥和拟南芥中.T0代经含有卡那霉素的1/2MS培养基筛选,获得了T1代转基因小拟南芥2株,T1代转基因拟南芥9株.通过激光共聚焦显微镜观察,在转基因小拟南芥和拟南芥的根尖细胞中均可检测到GFP绿色荧光蛋白;对转基因植株进行PCR扩增,均可检测到GFP基因,表明GFP基因已成功转入小拟南芥和拟南芥中.该研究建立了小拟南芥的遗传转化体系,为进一步利用GFP基因和进一步研究小拟南芥的功能基因奠定基础.  相似文献   

16.
The tumour-inducing T-DNA gene 4 (T-cyt gene) of the nopaline Ti plasmid pTiC58 was cloned and introduced into tobacco cells by leaf disc transformation using Agrobacterium plasmid vectors. Tobacco shoots exposed to elevated cytokinin levels were unable to develop roots and lacked apical dominance. Using exogenously applied phytohormone manipulations we were able to regenerate morphologically normal transgenic tobacco plants which differed in endogenous cytokinin levels from normal untransformed plants. Although T-cyt gene mRNA levels, as revealed by dot-blot hybridization data, in these rooting plants were only about half those in primary transformed shoots the total amount of cytokinins was much lower than in crown gall tissue or cytokinin-type transformed shoots as reported by others. Nevertheless the cytokinin content in T-cyt plants was about 3 times greater than in control tobacco plants.Elevated cytokinin levels have been shown to change the expression of several plant genes, including some nuclear genes encoding chloroplast proteins. Our results show that the mRNA levels of chloroplast rbcL gene increase in cytokinin-type transgenic tobacco plants as compared with untransformed plants. Data obtained suggest that T-cyt transgenic plants are a good model for studying plant gene activity in different parts of the plant under endogenous cytokinin stress.  相似文献   

17.
Transfer of useful genes from wild relatives of crop plants has relied upon successful conventional crossing or the availability of the cloned gene. Co-bombardment of rice callus with total genomic DNA from wild rice (Zizania palustris) and a plasmid containing a gene confirming hygromycin resistance allowed recovery under selection of transgenic plants with grain characteristics from wild rice. Amplified Fragment Length Polymorphism (AFLP) analysis suggested that a significant amount of DNA fromZizania was introduced by this procedure. One plant had 16 of a possible 122Zizania specific AFLP markers detected with the primers used. This approach may have potential for introgression of genes from wild relatives in other cases where highly efficient transformation methods are available.  相似文献   

18.
The agronomic performance of broad leaved crop plants such as cotton would be greatly improved if genetically-engineered resistance to broadleaf herbicides could both protect the plants from accidental spray drift damage and allow the suppression of problem broadleaf weeds by chemical means. Followingin vitro modification and the addition of plant expression signals, the gene for 2,4-D monooxygenase, a bacterial enzyme that degrades the broadleaf herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), was introduced into cotton plants byAgrobacterium-mediated transformation. First generation homozygous progeny of regenerated transgenic cotton plants carrying this gene exhibited up to a 50–100 fold increase in tolerance to 2,4-D compared with untransformed controls, and glasshouse trials suggest that the genetically-engineered plants would be completely protected from spray drift of 2,4-D, at least up to the normal field application rates commonly used on neighbouring cereal crops.  相似文献   

19.
Summary Transgenic cucumber plants (Cucumis sativus L., cv. Straight Eight) were regenerated from roots induced by inoculation of inverted hypocotyl sections with Agrobacterium rhizogenes containing the vector pARC8 in addition to the resident Ri-plasmid. The DNA transferred to the plant from the vector (T-DNA) included a gene which encoded the enzyme neomycin phosphotransferase II, and thus conferred on the plant cells resistance to kanamycin. The transgenic plants looked normal and were positive for the neomycin phosphotransferase II. Southern blot analysis of the transgenic plants revealed that all plants contained vector DNA, but only some of them contained DNA from the Ri plasmid.  相似文献   

20.
Wang J  Li Y  Liang C 《Transgenic research》2008,17(3):417-424
The aroA-M1 encoding the mutant of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) was introduced into the Brassica juncea genome by sonication-assisted, pollen-mediated transformation. The plasmid DNA and collected pollen grains were mixed in 0.3 mol/L sucrose solution and treated with mild ultrasonication. The treated pollen was then pollinated onto the oilseed stigmas after the stamens were removed artificially. Putative transgenic plants were obtained by screening germinating seeds on a medium containing glyphosate. Southern blot analysis of glyphosate-resistant plants indicated that the aroA-M1 gene had been integrated into the oilseed genome. Western blot analysis further confirmed that the EPSPS coded by aroA-M1 gene was expressed in transgenic plants. The transgenic plants exhibited increased resistance to glyphosate compared to untransformed plants. Some of those transgenic plants had considerably high resistance to glyphosate. The genetic analysis of T1 progeny further confirmed that the inheritance of the introduced genes followed the Mendelian rules. The results indicated that foreign genes can be transferred by pollen-mediated transformation combined with mild ultrasonication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号