首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Pairs of guard cells form stomatal pores through which gas exchange occurs. Gas exchange includes transpirational water loss, and guard cell signaling in drought response has been studied for decades. Abscisic acid (ABA) is the major hormone that regulates drought responses. ABA and other metabolites can be synthesized in one cell type or subcellular compartment and transported across mem- branes by specific transporters to conduct biological func- tions. Two new papers, both taking advantage of reverse genetic methods, one focusing on a plasma membrane ABA efflux carrier (Zhang et al., 2014) and the other on a putative mitochondrial pyruvate carrier (Li et al., 2014), have recently shown the importance of metabolite trans- porters in ABA function and guard cell response.  相似文献   

2.
3.
Dear Editor, The pathways of ethylene biosynthesis and signaling have been studied in detail (Ji and Guo, 2013). Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), interacting with ETR1, and its homologs tomato GREEN RIPE (SlGR) and SlGRL1, and rice OsRTH1 negatively regulate the ethylene signaling (Barry and Giovannoni, 2006, Resnick et al., 2006; Dong et al., 2010; Zhang et al., 2012). A newly published study suggested that a cytochrome b5 and RTE1 are functional partners in promoting ETRl-mediated repression of ethylene signaling in Arabidopsis (Chang et al., 2014). However, AtRTH, RTE1 homolog in Arabidopsis, and its closest homolog in the tomato, SlGRL2 (GR-like2), do not play a role in ethylene signaling (Dong et al., 2010), and the function of the homologs of these members is not well known.  相似文献   

4.
Earlier studies have shown that various stimuli can induce specific cytosolic calcium ([Ca^2+]cyt) oscillations in guard cells and various oscillations in stomatal apertures. Exactly how [Ca^2+]cyt oscillation signaling functions in stomatal oscillation is not known. In the present study, the epidermis of broad bean (Vicia faba L.) was used and a rapid ion-exchange treatment with two shifting buffers differing in K^+ and Ca^2+ concentrations was applied. The treatment for fivetransients at a 10-min transient period induced clear and regular stomatal oscillation. However, for other transient numbers and periods, the treatments induced some Irregular oscillations or even no obvious oscillations in stomatal aperture. The results indicate that stomatal oscillation Is encoded by parameter-specific [Ca^2+]cyt oscillation: the parameters of [Ca^2+]cyt oscillation affected the occurrence rate and the parameters of stomatal oscillation. The water channel inhibitor HgCl2 completely Inhibited stomatal oscillation and the inhibitory effect could be partially reversed by β-mercaptoethanol (an agent capable of reversing water channel inhibition by HgCl2). Other Inhibitory treatments against Ion transport (i.e. the application of LaCIs, EGTA, or tetraethylammonlum chloride (TEACI)) weakly impaired stomatal oscillation when the compounds were added after rapid ion-exchange treatment. If these compounds were added before rapid-ion exchange treatment, the inhibitory effect was much more apparent (except In the case of TEACI). The results of the present study suggest that water channels are involved In stomatal oscillation as a downstream element of [Ca^2+]cyt oscillation signaling.  相似文献   

5.
A START POINT FOR EXTRACELLULAR NUCLEOTIDE SIGNALING
The recent discovery of a plant receptor for extracellu- lar nucleotides, reported by Choi et al. (2014), is a major breakthrough that had been anticipated for over a dec- ade. Plants release ATP into their extracellular matrix (ECM) during growth and when they are induced by vari- ous biotic and abiotic stimuli (Clark and Roux, 2011). That these extracellular nucleotides would activate receptors in plants was predicted by two sets of discoveries: that low- and sub-micromolar ATP could induce increases in [Ca2+]cyt, NO, and superoxide signaling intermediates that led to downstream growth, stomatal, and defense responses, and that these changes could be blocked by antagonists that blocked extracellular nucleotide receptors in animals (Demidchik et al., 2003; Song et al., 2006; Clark et al., 2011; Demidchik et al., 2009, 2011). Although mammalian biolo- gists had discovered two classes of receptors for extracel- lular nucleotides (P2X and P2Y) decades ago (Burnstock, 2007), there were no plant proteins obviously similar to these in any sequence data available. Clearly, if there were plant purinoceptors, they would be different from the mammalian receptors, and they could not be discovered by motif searches.  相似文献   

6.
Dear Editor,
The physiological functions of carotenoids in plants go beyond their traditional roles as accessory light-har- vesting pigments, natural colorants, and quenchers of tri- plet chlorophyll and singlet oxygen (102). Recent studies have indeed emphasized the functional role of molecules derived from carotenoids as phytohormones (Ruyter-Spira et al., 20β) or messengers in stress signaling pathways (Havaux, 2014). In particular, chemical quenching of 102 by carotenoids within the photosystems involves oxidation of the carotenoid molecules, generating a variety of oxi- dized products (Ramel et al., 2012). β-Cyclocitral, a volatile C7 derivative of β-carotene, is one such molecule produced during high light stress, which was found to induce changes in the expression of 102-responsive genes (Ramel et al., 2012). Moreover, the β-cyclocitral-dependent gene repro- gramming was associated with an increased tolerance of the plants to photooxidative stress. These effects appeared to be specific to β-cyclocitral since they were not observed with β-ionone, a C9-oxidized derivative of ~-carotene, which was not able to induce or repress the expression of 1O2 gene markers. Based on those results, it was pro- posed that β-cyclocitral is a plastid messenger involved in the chloroplast-to-nucleus 1O2 signaling pathway lead- ing to acclimation to high light stress (Ramel et al., 2012). However, in vitro 102 oxidation of β-carotene is known to produce other volatile compounds besides β-cyclocitral and IB-ionone, such as dihydroactinidiolide (dhA, Figure 1A) and a-ionene (Ramel et al., 2012). The dhA molecule is a lac- tone (cyclic ester) resulting from the secondary oxidation of β-ionone through the intermediate 5,6-epoxy-β-ionone (Havaux, 2014). Both dhA and o-ionene were detected in plant leaves and fruits (e.g. Del Mar Caja et al., 2009; Ramel et al., 2012). Interestingly, dhA, but not o-ionene, was reported to accumulate in Arabidopsis leaves under hiclh liclht str  相似文献   

7.
8.
Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely to be a result of the interactions and modulations ámong root signals. As a stress signal, abscisic acid (ABA) plays a central role in root to shoot signaling, pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status, pH itself can be modified by several factors, among which the chemical compositions in the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH, more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastic pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se. The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots if a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles in the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.  相似文献   

9.
10.
Dear Editor, Higher plants have evolved hundreds of genes encodingreceptor-like kinases (RLKs), which function as cell surfacereceptors perceiving developmental and environmental sig-nals (Shiu et al., 2004). Many RLKs have been shown to playspecific roles in hormone responses, developmental regula-tion, defense against pathogen infection, and adaptationto abiotic stresses (Chae et al., 2009; Antolin-Llovera et al.,2012). The mechanisms that ensure specific signal transduc-tion from each RLK to target cellular responses remain poorlyunderstood. Recent studies revealed that many RLKs trans-duce signals by phosphorylating receptor-like cytoplasmickinases (RLCKs), which lack the transmembrane domainsbut are anchored at the plasma membrane through lipidmodification (Tang et al., 2008; Zhang et al., 2010; Shi et al.,2013). There are over 400 RLKs and only about 150 RLCKs inArabidopsis (Shiu et al., 2004). One outstanding question iswhether each RLCK mediates signaling downstream of a spe-cific RLK, participates in multiple RLK pathways, or mediatescrosstalk between RLK pathways.  相似文献   

11.
Selective degradation of the IκB kinase (IKK) by autophagy   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(11):855-856
Proteasome-mediated degradation and autophagy are the two major pathways mediating the turnover of cellular proteins. The proteasomal pathway is known to be a highly specific and regulated process mediating the degradation of short-lived proteins such as many important factors involved in cellular signaling. In contrast, it is generally thought that autophagy is rather nonselective as it is responsible for the bulk degradation of long-lived proteins and organelles. Challenging this general view, in this issue of Cell Research, Qing et al. report that selective degradation of the IκB kinase (IKK) triggered by the loss of Hsp90 function is mediated by autophagy [1].  相似文献   

12.
13.
Dear Editor, Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) islocated at an important branch point in the carbohydratemetabolism of plants. The enzyme is a homotetramer andcatalyzes the addition of bicarbonate to phosphoenolpyru-vate (PEP) to form oxaloacetate and phosphate. PEPC isregulated by metabolites and phosphorylation. AIIostericfeedback inhibition is mainly regulated by L-malate andL-aspartate which bind to a site separated from the activecenter (Kai et al., 1999; Paulus et al., 2013). Structure analy-sis of PEPC from Escherichia coli (Kai et al., 1999; Matsumuraet al., 2002), Zea rnays (Matsumura et al., 2002), Flaveria trin-ervia, and F. pringlei (Paulus et al., 2013) revealed that thesubstrate PEP and the feedback inhibitors bind to separatesites within each monomer.  相似文献   

14.
Dear Editor, Cyclophilins (CYP) are a class of highly conserved pepti- dyl-prolyl cis-trans isomerases (PPlases) that play important roles in various biological processes in eukaryotes (reviewed in Romano et al. (2004)). In higher plants, a conserved sin- gle domain cyclophilin has been identified as a novel com- ponent of the auxin signaling pathway by analyzing the tomato diageotropica (dgt) mutant (Ivanchenko et al., 2006; Oh et al., 2006). The dgt mutant displays a lateral-rootless and auxin-resistant phenotype (Ivanchenko et aL, 2006). Further studies revealed that mutations in the DGT-like genes of Physcomitrella patens also exhibited an auxin-resistant phenotype, suggesting a conserved role of DGT-like proteins in auxin signaling. Moreover,  相似文献   

15.
《植物生理学报》2013,(6):1984-1987
Dear Editor, In most plants, nitrogen (N) is acquired by roots in the form of nitrate (NO3-). In many species, NO3- is not assimi- lated in the roots, but is secreted into the xylem sap for translocation to the shoot, where it enters the cells to be metabolized and/or stored in the vacuoles. Several plasma membrane transporters involved in NO3- influx into the cell have been identified in Arabidopsis (Wang et ai., 2012), especially in the roots where members of the NPF (NRTI/PTR Family, L~ran et al., 2013) and NRT2 transporter families are predominantiy implicated. Concerning efflux to the xylem sap, only one transporter, NPF7.3/NRT1.5, has been shown to be involved. However, physiological characterization of npf7.31nrtl.5 knockout mutant plants demonstrated that other transporter(s) is (are) also contributing to xylem Ioad- inq of NO~- (Lin et al., 2008).  相似文献   

16.
17.
18.
An ABA insensitive mutant, Beyma, was isolated in Lotus japonicus MG-20 from an EMS mutagenesis population using root growth inhibition to applied ABA as the screening criterion. (The name "Beyma" was taken from the Australian Aboriginal language, Wagiman, beyma, meaning ‘drying up'.) The stable mutant that segregates as a dominant Mendelian mutation is insensitive to ABA induced inhibition of germination, vegetative growth, stomatal opening, as well as nodulation. Tissue ABA levels were normal, suggesting a sensitivity rather than biosynthesis mutation. It is slow-growing (50-70% of wild-type MG-20) and has a near-constitutive wilty phenotype associated with its inability to regulate stomatal opening. Whilst showing a wide range of ABA insensitive phenotypes, Beyma did not show alteration of nodule number control, as, in the absence of added ABA, the number and patterning (but not size) of nodules formed in the mutant were similar to that of MG-20. Split root experiments on MG-20 showed that application of ABA on one side of the root inhibited nodulation locally but not systemically. We propose that ABA is not involved directly in systemic autoregulation of nodulation (AON).  相似文献   

19.
The systematic or long-distance signal transmission plays crucial roles in animal lives. Compared with animals, however, much less is known about the roles of long-distance signal communication in plant lives. Using the model plant Commelina communis L., we have probed the root to shoot communication mediated by heat-shock signals. The results showed that a heat shock of 5 min at 40℃ in partial roots, i.e. half or even 1/4 root system, could lead to a significant decrease in stomatal conductance. The regulation capability depends on both heat shock temperature and the amount of root system, i.e. with higher temperature and more roots stressed, the leaf conductance would decrease more significantly. Interestingly, the stomatal regulation by heat shock signal is in a manner of oscillation: when stomata conductance decreased to the lowest level within about 30 min, it would increase rapidly and sometimes even exceed the initial level, and after several cycles the stomata conductance would be finally stabilized at a lower level. Feeding xylem sap collected from heat-shocked plants could lead to a decrease in stomata conductance, suggesting that the heat shock-initiated signal is basically a positive signal. Further studies showed that heat shock was not able to affect ABA content in xylem sap, and also, not able to lead to a decrease in leaf water status, which suggested that the stomatal regulation was neither mediated by ABA nor by a hydraulic signal. Heat shock could lead to an increase in xylem sap H2O2 content, and moreover, the removal of H2O2 by catalase could partially recover the stomatal inhibition by xylem sap collected from heat-shocked plants, suggesting that H2O2 might be able to act as one of the root signals to control the stomatal movement. Due to the fact that heat-shock and drought are usually two concomitant stresses, the stomatal regulation by heat-shock signal should be of significance for plant response to stresses. The observation for the stomatal regulation in an oscillation manner by presently identified new signals should contribute to further understanding of the mystery for the pant systematic signaling in response to stresses.  相似文献   

20.
Ubiquitination in Abscisic Acid-Related Pathway   总被引:1,自引:0,他引:1  
Ubiquitination is emerging as a tight regulatory mechanism that is necessary for all aspects of development and survival of all eukaryotes. Recent genomic and genetic analysis in Arabidopsis suggests that ubiquitination may also play important roles in plant response to the phytohormone abscisic acid (ABA). Many components of the ubiquitination pathway, such as ubiquitin-conjugating enzyme E2, ubiquitin ligase E3 and components of the proteasome, have been identified or predicted to be essential in ABA biosynthesis, catabolism and signaling. In addition, the ubiquitination-related pathway, sumoylation, is also involved in ABA signaling. We summarize in this report recent developments to elucidate their roles in the ABA-related pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号