首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic deuterium isotope effects for the noncompetitive, intermolecular monoamine oxidase B-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the corresponding 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+ were found to be 3.55 on Vmax and 8.01 on Vmax/Km with MPTP-6,6-d2 as the deuterated substrate. Similar values were obtained with MPTP-2,2,6-d4 and MPTP-CD3-2,2,6,6-d4. The deuterium isotope effect for the electrochemical oxidation of 1 mM MPTP-2,2,6,6-d4 was only 1.35. These results indicate that the monoamine oxidase B-catalyzed oxidation of this substrate may not proceed via a reaction pathway involving alpha-carbon deprotonation of an aminium radical intermediate. Isotope effect measurements also established that the rate of inactivation of monoamine oxidase B by MPTP is unaffected by replacement of the C-6 methylene protons with deuterons, but is retarded by replacement of the C-2 methylene protons (DKi = 1.9). The mechanism-based inactivation of monoamine oxidase B by MPTP, therefore, is likely to mediated by a species derived from the enzyme-generated 2,3-dihydropyridinium oxidation product.  相似文献   

2.
M E Bembenek 《Life sciences》1990,46(25):1873-1877
The ability of highly purified preparations of human monoamine oxidase A and B (MAO A and B) to utilize 1-methyl-4-(1-methylpyrrol-2-yl)-4-piperidinol (MMPP) and its dehydration product 1,2,3,6-tetrahydro-1-methyl-4-(methylpyrrol-2-yl) pyridine (TMMP) as substrates was investigated. The results showed that TMMP was a substrate for both forms of MAO with Km,app values of approximately 60 microM. However, MAO B had a Vmax,app for TMMP about 30-fold greater than MAO A. Additional studies revealed that MMPP was a poor substrate of only MAO B (Km,app = 9.5 mM) and that acid treatment of MMPP led to the formation of a product that could be readily oxidized by both MAO A and B. Similar acid pretreatment of TMMP yielded a product that was a much poorer substrate for MAO B than the parent compound. These results may partially explain why orally administered MMPP produces neurotoxicity in monkeys and TMMP fails to induce chemical parkinsonism.  相似文献   

3.
The parkinsonian inducing agent, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a cyclic tertiary allylamine exhibiting good monoamine oxidase B (MAO-B) substrate properties. MAO-B catalyzes the ring alpha-carbon 2-electron bioactivation of MPTP to yield the 1-methyl-4-phenyl-2,3-dihydropyridinium species (MPDP(+)). The corresponding 5-membered ring MPTP analogue, 1-methyl-3-phenyl-3-pyrroline, also undergoes MAO-B-catalyzed oxidation to give the 2-electron oxidation product, 1-methyl-3-phenylpyrrole. Here we report the kinetic deuterium isotope effects on V(max) and V(max)/K(m) for the steady-state oxidation of 1-methyl-3-phenyl-3-pyrroline and 1-methyl-3-(4-fluorophenyl)-3-pyrroline by baboon liver MAO-B, using the corresponding pyrroline-2,2,4,5,5-d(5) analogues as the deuterated substrates. The apparent isotope effects for the two substrates were 4.29 and 3.98 on V(max), while the isotope effects on V(max)/K(m) were found to be 5.71 and 3.37, respectively. The values reported for the oxidation of MPTP by bovine liver MAO-B with MPTP-6,6-d(2), as deuterated substrate, are (D)(V(max))=3.55; (D)(V(max)/K(m))=8.01. We conclude that the mechanism of the MAO-B-catalyzed oxidation of pyrrolinyl substrates is similar to that of the tetrahydropyridinyl substrates and that a carbon-hydrogen bond cleavage step is, at least partially, rate determining.  相似文献   

4.
Sixteen analogs of N-methyl-1,2,3,6-tetrahydropyridine (MPTP) of varying degrees of flexibility have been studied as substrates of highly purified monoamine oxidases (MAO) A and B. The relative effectiveness of the various tetrahydropyridines as substrates of MAO A and B were evaluated in terms of the function turnover number/Km, as determined by initial rate measurements. The insertion of a methylene bridge between the phenyl and tetrahydropyridine moieties of MPTP to yield N-methyl-4-benzyl-1,2,3,6-tetrahydropyridine, rendering the molecule more flexible, greatly enhances reactivity with MAO B, but not with MAO A, as compared with MPTP itself, in accord with data in the literature (Youngster et al., 1989a). The ethylene-bridged MPTP analog, on the other hand, is a far better substrate of both forms of MAO than is MPTP itself. The effect of molecular flexibility on the rate of oxidation of these compounds is obscured by substituents on the aromatic ring. Branching and rigidity were detrimental to the activity as substrates of both forms of MAO. Those analogs of 1 which contain small electron-withdrawing substituents in the phenyl ring were found to be more selective for MAO B, while those substituted with bulky groups were selectively oxidized by MAO A. The substrate binding site of MAO A probably contains a lipophilic pocket larger than that found in a similar site in MAO B.  相似文献   

5.
Kinetics of monoamine oxidase (MAO) catalyzed dehydrogenation of neurotropic analogues of biogenic monoamines in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine series were studied. It is shown that methyl substitution in the phenyl ring increases significantly the enzyme-substrate affinity, but the substituent's effect on the catalytic stage largely depends upon its position in the ring. o- and m-Methyl derivatives were preferably oxidized by B type of MAO, whereas p-total derivative was oxidized by B type as well as by A type of the enzyme. In the course of the oxidation reactions MAO is irreversibly inhibited by the dihydropyridinium product of the reaction, particularly in case of methyl derivatives. The significant and structure-dependent inhibition of the enzyme might be responsible for the differences in neurotropic properties of the above substrate homologues.  相似文献   

6.
M Naoi  T Nagatsu 《Life sciences》1987,40(4):321-328
L-3,4-Dihydroxyphenylalanine (DOPA) was found to inhibit type A monoamine oxidase in human placental mitochondria. The inhibition proved to be noncompetitive with the substrate, kynuramine, and the inhibition was completely reversible. D-DOPA was found to inhibit monoamine oxidase in the same way, and the apparent Ki values of L- and D-DOPA were obtained to be 154 microM and 133 microM, respectively. L-alpha-Methyl-DOPA was found to inhibit the MAO activity competitively with the substrate, but studies with other analogues of DOPA revealed that the inhibition required an amino and a carboxyl group at alpha-position. The substitution of a hydroxy group at 3 or 4 position of catechol ring with a methoxy group was found to abolish the inhibition of the MAO activity. In addition to type A MAO in human liver and placental mitochondria, type B MAO in liver mitochondria was inhibited by L-DOPA, but type B MAO was less sensitive to L-DOPA. These results were discussed in terms of its possible regulation of the level of biogenic amines in the brain.  相似文献   

7.
A series of racemic, diastereoisomeric aryl cyclopropylamines substituted with fluorine in the 2-position and electron-donating and electron-withdrawing groups on the aromatic ring have been prepared. These represent analogues of the classic MAO inhibitor tranylcypromine (trans-2-phenylcyclopropylamine, 1). Their activities as inhibitors of recombinant human liver monoamine oxidases A (MAO A) and B (MAO B) were determined. The trans-compounds were low micromolar inhibitors of both MAO A and MAO B with moderate MAO A selectivity while the less active cis-analogues were MAO B selective. In the trans-series, electron-withdrawing para-substituents increased the potency of MAO A inhibition while electron-donating groups such as methyl or methoxy had no influence on this activity. In contrast, aromatic ring substitution in the trans-series had essentially no effect on the inhibition of MAO B. The corresponding cis-compounds were shown to be 10-100 times less active against MAO A, while trans- and cis-compounds were quite similar in terms of inhibition of MAO B. The best MAO A/MAO B selectivity (7:1) in the trans-series was found for trans-2-fluoro-2-(para-trifluoromethylphenyl)cyclopropylamine (7d), while a 1:27 selectivity was found for cis-2-fluoro-2-(para-fluorophenyl)cyclopropylamine (10c). These results are discussed in connection with the pK(a) and logD values, the mechanism of action of tranylcypromines, and the geometry of the active site of the enzymes.  相似文献   

8.
In a previous study we have investigated the monoamine oxidase (MAO) inhibitory properties of a series of 8-sulfanylcaffeine analogues. Among the compounds studied, 8-[(phenylethyl)sulfanyl]caffeine (IC50 = 0.223 μM) was found to be a particularly potent inhibitor of the type B MAO isoform. In an attempt to discover potent MAO inhibitors and to further examine the structure–activity relationships (SAR) of MAO inhibition by 8-sulfanylcaffeine analogues, in the present study a series of 8-[(phenylethyl)sulfanyl]caffeine analogues were synthesized and evaluated as inhibitors of human MAO-A and -B. The results document that substitution on C3 and C4 of the phenyl ring with alkyl groups and halogens yields 8-[(phenylethyl)sulfanyl]caffeine analogues which are potent and selective MAO-B inhibitors with IC50 values ranging from 0.017 to 0.125 μM. The MAO inhibitory properties of a series of 8-sulfinylcaffeine analogues were also examined. The results show that, compared to the corresponding 8-sulfanylcaffeine analogues, the 8-sulfinylcaffeins are weaker MAO-B inhibitors. Both the 8-sulfanylcaffeine and 8-sulfinylcaffeine analogues were found to be weak MAO-A inhibitors. This study also reports the MAO inhibition properties of selected 8-[(phenylpropyl)sulfanyl]caffeine analogues.  相似文献   

9.
The interaction of purified bovine liver MAO B with the benzylamine analogues N,N-dimethylbenzylamine and alpha-methylbenzylamine has been investigated. Both classes of analogues are competitive inhibitors of benzylamine oxidase activity. The K(i) values were determined for nine different para-substituted N, N-dimethylbenzylamine analogues. Analysis of the binding affinities demonstrate the deprotonated forms of the tertiary amines are preferentially bound to MAO B and the affinity decreases with increasing van der Waals volume of the para-substituent. The correlation for this relation is:Log K(i)=-0.97+/-(0.28)sigma+(0. 75+/-0.11)(0.1xV(w))-4.24+/-(0.16)alpha-Methyl benzylamine analogues are also found to be competitive inhibitors of MAO B-catalyzed benzylamine oxidation. Similar K(i) values were determined using either the S or R stereoisomers. Analysis of the binding affinities of five para-substituted alpha-methylbenzylamine analogues to MAO B shows the deprotonated form also to be preferentially bound and the affinity is marginally increased with increasing van der Waals volume of the para-substituent:Log K(i)=-0.71sigma-(0.32)(0. 1xV(w))-3.50Comparison of these data with that previously published for para-substituted benzylamine binding to MAO B (Walker and Edmondson, Biochemistry 33 (1994) 7088-7098) demonstrates that these benzylamine analogues exhibit differing modes of binding to the active site of MAO B. The presence of an electronic substituent effect in the binding of these two classes of analogues compared with the lack of an observable electronic effect in the binding of benzylamine to MAO B is consistent with the proposal that orientation of the benzyl ring of the bound substrate is responsible for the absence of an electronic substituent effect on the rate of the reductive half reaction (Miller and Edmondson, Biochemistry 38 (1999) 13670-13683).  相似文献   

10.
Six analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP, (1)] bearing various heteroaryl groups at C-4 were synthesized and examined for their monoamine oxidase B substrate properties. The C-4 substituents include the 1-ethylpyrrol-2-yl, 1-propylpyrrol-2-yl, 1-isopropylpyrrol-2-yl, 1-cyclopropylpyrrol-2-yl, 3-ethylfuran-2-yl and 3-ethylthien-2-yl groups. The results provide information concerning steric and polar interactions between the C-4 substituent and the active site of MAO-B that are transmitted to the position of oxidation at C-6 of the tetrahydropyridinyl moiety.  相似文献   

11.
Literature reports that isatin as well as C5- and C6-substituted isatin analogues are reversible inhibitors of human monoamine oxidase (MAO) A and B. In general, C5- and C6-substitution of isatin leads to enhanced binding affinity to both MAO isozymes compared to isatin and in most instances result in selective binding to the MAO-B isoform. Crystallographic and modeling studies suggest that the isatin ring binds to the substrate cavities of MAO-A and -B and is stabilized by hydrogen bond interactions between the NH and the C2 carbonyl oxygen of the dioxoindolyl moiety and water molecules present in the substrate cavities of MAO-A and -B. Based on these observations and the close structural resemblances between isatin and its phthalimide isomer, a series of phthalimide analogues were synthesized and evaluated as MAO inhibitors. While phthalimide and N-aryl-substituted phthalimides were found to be weak MAO inhibitors, phthalimide homologues containing C5 substituents were potent reversible inhibitors of recombinant human MAO-B with IC(50) values ranging from 0.007 to 2.5 μM and moderately potent reversible inhibitors of recombinant human MAO-A with IC(50) values ranging from 0.22 to 9.0 μM. By employing molecular docking the importance of hydrogen bonding between the active sites of MAO-A and -B and the phthalimide inhibitors are highlighted.  相似文献   

12.
N-Methyl-1,2,3,4-tetrahydroisoquinoline (NMTIQ) was found to be oxidized by monoamine oxidase (MAO) into N-methylisoquinolinium ion, which was proved to inhibit enzymes related to the metabolism of catecholamines, such as tyrosine hydroxylase, aromatic-L-amino acid decarboxylase, and MAO. NMTIQ was oxidized by both types A and B MAO in human brain synaptosomal mitochondria. Oxidation was dependent on the amount of MAO sample and the reaction time. Enzyme activity with respect to NMTIQ reached optimum at a pH of approximately 7.25, as was the case with other substrates. Type A MAO had higher activity for this substrate than type B. The Km and Vmax values of the oxidation by types A and B MAO were 571 +/- 25 microM and 0.29 +/- 0.06 pmol/min/mg protein, and 463 +/- 43 microM and 0.16 +/- 0.03 pmol/min/mg protein, respectively. The Vmax values of types A and B MAO for NMTIQ were much smaller than those for other substrates such as kynuramine. NMTIQ was the first tetrahydroisoquinoline shown to be oxidized into the isoquinolinium ion by MAO in the brain.  相似文献   

13.
Abstract: Effects of acute and chronic administration of 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were investigated for dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid, in nucleus caudatus putamen (NCP), limbic system, and substantia nigra (SN) of golden hamster and BALB/c and C57/BL mice to obtain a clue for the variance of MPTP toxicity between the strains and species. Regional differences in the levels of monoamine oxidase (MAO) and the in vitro effects of MAO inhibitors were also determined and correlated with MPTP neurotoxicity. Concentrations of MPTP in the brains of mice and golden hamster at 10 min were comparable. Golden hamster was found to be resistant to the administration of MPTP as indicated by a lack of any alteration from the normal content of DA in NCP, limbic system, and SN. Both strains of mice exhibited >50% and >75% depletion of DA (C57/BL and BALB/c, respectively). The metabolites-to-DA ratios were decreased and increased in golden hamster and mouse strains, respectively, after acute or chronic treatment. Whereas the content of total MAO in golden hamster was one-third to one-sixth of any nuclei or mitochondria of both strains of mice, the ratio of MAO A to B was significantly higher in the former species. A possible involvement of discrete regional MAO activity in determining the extent of susceptibility of a species to MPTP toxicity is indicated from the study because (1) susceptibility as evidenced by DA depletion of a species coincided with high levels of MAO activity in SN and NCP, and (2) a highly positive correlation existed with total MAO and MAO B activity, there was a lack of correlation with MAO A activity, and a negative correlation existed with MAO A-to-B ratio and DA depletion. Hence, we propose that the resistance of a species to MPTP toxicity may depend on the content as well as the ratios of the two forms of MAO in NCP and SN. In other words, a higher MAO activity and a relative dominance of MAO B in these nuclei are critical in determining the susceptibility of a species to MPTP neurotoxicity.  相似文献   

14.
Hanson JR  Fraga BM 《Phytochemistry》2008,69(11):2104-2109
The chemistry, the biosynthesis and the biotransformations related to fujenal and its analogues are reviewed. Despite the opportunity for free rotation about the C-9:C-10 bond, the chemistry of the ring B of this diterpenoid is dominated by neighbouring group participation between C-6, C-7 and C-19.  相似文献   

15.
R E Viola  W W Cleland 《Biochemistry》1980,19(9):1861-1866
Chitose-6-P (2,5-anhydromannose-6-P) induces ATPase activity of fructose-6-P kinase with a Vmax 2-3% that of the normal kinase reaction with fructose-6-P or 2,5-anhydromannitol. Chitose (and presumably also chitose-6-P) is 52% hydrated in water while chitose deuterated at C-1 is 60% hydrated because of the equilibrium isotope effect of 0.73 on aldehyde hydration. Deuterated chitose-6-P gave a normal isotope effect on V/K of 1.23, but no effect on Vmax, showing that the free aldehyde is the activator and the hydrated form does not bind appreciably. With fructokinase, chitose can act either as a substrate, being phosphorylated at C-6 when adsorbed with C-6 next to MgATP, or as an inducer of ATPase activity when adsorbed with C-1 next to MgATP. The ATPase has a rate about 25% that of the kinase.  相似文献   

16.
We have compared the protein tyrosine kinase activities of the chicken epidermal growth factor receptor (chEGFR) and three ErbB proteins to learn whether cancer-activating mutations affect the kinetics of kinase activity. In immune complex assays performed in the presence of 15 mM Mn2+, ErbB proteins and the chEGFR exhibited highly reproducible tyrosine kinase activity. Under these conditions, the ErbB and chEGFR proteins had similar apparent Km [Km(app)] values for ATP. The ErbB proteins appeared to be activated, as they had at least 3-fold-higher relative Vmax(app) for autophosphorylation and approximately 2-fold higher relative Vmax(app) for the phosphorylation of the exogenous substrate TK6 (a bacterially expressed fusion protein containing the C-terminal domain of the human EGFR). The ErbB kinases had both higher Km(app) and higher Vmax(app) for the phosphorylation of the exogenous substrate TK6 than did the chEGFR. The ratios of the Vmax(app) to the Km(app) for TK6 phosphorylation suggested that the ErbB proteins had lower catalytic efficiencies for the exogenous substrate than did the chEGFR. The three tested ErbB proteins had cytoplasmic domain mutations that conferred distinctive disease potentials. These mutations did not affect the kinetics for the phosphorylation of the exogenous substrate TK6. Two of the ErbB proteins contained all of the sites used for autophosphorylation. In these, a mutation that broadened oncogenic potential to endothelial cells caused an additional increase in Vmax(app) for autophosphorylation. Thus, mutations that change the EGFR into an ErbB oncogene cause multiple changes in the kinetics of protein tyrosine kinase activity.  相似文献   

17.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a thermal breakdown product of a meperidine-like narcotic analgetic used by drug abusers as a synthetic heroin, causes Parkinsonian symptoms in humans and degeneration of the substantia nigra in monkeys. MPTP is oxidized by brain mitochondrial preparations in a process which is blocked by deprenyl and pargyline, implying catalysis by monoamine oxidase B. The present paper demonstrates that pure MAO B isolated from beef liver oxidizes MPTP 38% as fast as benzylamine with a comparable Km value. Additionally, MAO A, isolated from human placenta, oxidizes MPTP to the same product at about 12% of the rate of kynuramine, again with a comparable Km value. The latter reaction is blocked by clorgyline. Both forms of MAO are progressively inactivated by MPTP by a process which follows first order kinetics. This progressive inactivation and the fact that the activity of MAO B is not significantly regenerated following gel exclusion chromatography suggest the formation of a covalent adduct with enzyme. Thus, MPTP appears to be a suicide inactivator of MAO.  相似文献   

18.
The primary acid product of DPNH   总被引:1,自引:0,他引:1  
Analysis of the proton magnetic resonance spectra obtained at 220 MHz confirms the axial conformation of the C-6 hydroxyl in the model primary acid product 1-n-(2,6-dichlorobenzyl)-6-hydroxy-1,4,5,6-tetrahydronicotinamide. In the primary acid product of DPNH however the reaction occurs stereospecifically with the substitution at the C-6 position equatorial and on the B-side of the pyridine ring and the C-4A proton axial. A cyclic structure α,O2′-6B cyclotetrahydronicotinamide is proposed for the primary acid product of DPNH, formed by epimerization of βDPNH to the α configuration followed by protonation at C-5 and subsequent attack of the ribose C-2′-OH on the C-6 position forming a new five membered ring.  相似文献   

19.
The sugar phosphate specificity of the active site of 6-phosphofructo-2-kinase and of the inhibitory site of fructose-2,6-bisphosphatase was investigated. The Michaelis constants and relative Vmax values of the sugar phosphates for the 6-phosphofructo-2-kinase were: D-fructose 6-phosphate, Km = 0.035 mM, Vmax = 1; L-sorbose 6-phosphate, Km = 0.175 mM, Vmax = 1.1; D-tagatose 6-phosphate, Km = 15 mM, Vmax = 0.15; and D-psicose 6-phosphate, Km = 7.4 mM, Vmax = 0.42. The enzyme did not catalyze the phosphorylation of 1-O-methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, 2,5-anhydro-D-mannitol 6-phosphate, D-ribose 5-phosphate, or D-arabinose 5-phosphate. These results indicate that the hydroxyl group at C-3 of the tetrahydrofuran ring must be cis to the beta-anomeric hydroxyl group and that the hydroxyl group at C-4 must be trans. The presence of a hydroxymethyl group at C-2 is required; however, the orientation of the phosphonoxymethyl group at C-5 has little effect on activity. Of all the sugar monophosphates tested, only 2,5-anhydro-D-mannitol 6-phosphate was an effective inhibitor of the kinase with a Ki = 95 microM. The sugar phosphate specificity for the inhibition of the fructose-2,6-bisphosphatase was similar to the substrate specificity for the kinase. The apparent I0.5 values for inhibition were: D-fructose 6-phosphate, 0.01 mM; L-sorbose 6-phosphate, 0.05 mM; D-psicose 6-phosphate, 1 mM; D-tagatose 6-phosphate, greater than 2 mM; 2,5-anhydro-D-mannitol 6-phosphate, 0.5 mM. 1-O-Methyl-D-fructose 6-phosphate, alpha- and beta-methyl-D-fructofuranoside 6-phosphate, and D-arabinose 5-phosphate did not inhibit. Treatment of the enzyme with iodoacetamide decreased sugar phosphate affinity in the kinase reaction but had no effect on the sensitivity of fructose-2,6-bisphosphatase to sugar phosphate inhibition. The results suggest a high degree of homology between two separate sugar phosphate binding sites for the bifunctional enzyme.  相似文献   

20.
Aminoethyl 3-chlorobenzyl ether was shown previously (Ding, C.Z. and Silverman, R.B. (1993). Bioorg. Med. Chem. Lett., 3, 2077-2078) to be a potent and selective time-dependent, but reversible inhibitor of monoamine oxidase B (MAO B). Based on this result, a series of novel aminoethyl substituted benzyl ethers was synthesized and the compounds were examined as potential inhibitors of both isozymic forms of MAO. Each compound in the series inhibits both MAO A and MAO B competitively, and IC(50) values for each compound were determined. In general, the B isozyme is much more sensitive to these inhibitors than the A isozyme (except for the o- and p-substituted nitro analogues), in some cases by more than two orders of magnitude. The selectivity in favor of MAO B inhibition is relatively high for all of the meta-substituted analogues and quite low for all of the ortho-substituted analogues. Having the substituent at the ortho-position is most favorable for MAO A inhibition. With MAO B the meta-analogues were, in general, more potent than the corresponding ortho- and para-analogues with respect to their reversible binding constants. The meta-iodo analogue is the most potent analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号