首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diarrhea is one of the most frequent diseases affecting newborn calves in intensive systems. Several strategies were proposed to protect and improve health, such as probiotics. This work was directed to design a product containing freeze-dried bacteria, vitamins, and minerals, as well as to optimize conditions with lyoprotectors, combine strains and add vitamins, minerals, and inulin to the product. The lyoprotectors were milk, milk-whey, and actose, and products were stored for 6 months at 4°C. Combined bacteria were freeze-dried in milk and the final products were added with minerals, vitamins, and insulin. The viable cells were determined by the plate count assay and antibiotic profiles to differentiate strains. Lactobacillus johnsonii CRL1693, L. murinus CRL1695, L. mucosae CRL1696, L. salivarius CRL1702, L. amylovorus CRL1697, and Enterococcus faecium CRL1703 were evaluated. The optimal conditions were different for each strain. Milk and milk whey maintained the viability during the process and storage after 6 months for most of the strains, except for L. johnsonii. Lactose did not improve cell’s recovery. L. murinus was viable for 6 months in all the conditions, with similar results in enterococci. In strains combined before freeze-dried, the viability decreased deeply, showing that one-step process with bacteria mixtures, vitamins, and minerals were not adequate. Freeze-dried resistance depends on each strain and must be lyophilized individually.  相似文献   

2.
Raw minced meat samples (25) were randomly collected from different slaughterhouses in Dakhlia and Sharkyia Governorates, Egypt. One hundred and fifty Bacillus species related to the cereus group were isolated from the collected meat samples using Mannitol Yolk Polymyxin (MYP) agar plates. Purified bacterial cultures were then tested for their virulence factors with respect to hemolysin, protease and lecithinase. Of the tested Bacillus strains (150), 81, 95.3 and 76 % of total tested Bacillus strains were positive for hemolysin, protease and lecithinase tests, respectively. The identity of one of the most potent strains suspected and encoded as Bacillus cereus F23 was confirmed by amplifying its 16S rRNA gene. The partial nucleotide sequence of the amplified 16S rRNA gene of the tested strain was submitted to GenBank with accession number JX455159. Multiplex PCR amplification of enterotoxin genes in the tested strain, using specific primers, yielded amplicons of molecular sizes 695 and 565 bp for enterotoxins hblC and cytK, respectively. Thermal resistance of B. cereus F23 (JX455159) spores was determined by calculating D values at 65, 75, 85 and 95 °C for 36, 25, 19 and 16 min, respectively, and the calculated Z value was recorded as 0.119 °C. A lactic acid bacteria (LAB) strain isolated from pickles was preliminary identified as Lactobacillus plantarum F14 (LBF14) and later confirmed by detecting its 16S rRNA gene, and it was submitted to GenBank with accession number JX282192. The identified LAB strain was tested as a bioprotective agent against toxigenic B. cereus F23 spores both in minced meat samples and BHI broth medium. A reduction in B. cereus F23 population between 4 and 6 log cycles under different tested conditions was recorded. The activity of virulence factors (protease and lecithinase) decreased and hemolytic activity was completely inhibited in the presence of 103 CFU/ml of Lactobacillus plantarum F14 (JX282192). Inthe presence of 105 CFU/ml Lactobacillus plantarum F14 (JX282192), protease and lecithinase activities of B. cereus F23 were decreased by 85 and 71 %, respectively.  相似文献   

3.
The evaluation of the potentiality of lactic acid bacteria (LAB) strains isolated from different origins to inhibit mould growth and to identify and characterize the antifungal metabolites were the aims of this study. From a total of ninety-one LAB strains tested, ten were selected due to their high inhibitory effect (>80%). The antifungal activity of the majority of the selected LAB strains was lost after the neutralization treatment determining the acidic nature of the antifungal metabolites. Lactic, acetic and phenyllactic (PLA) acids were identified as being responsible for antifungal effect in the 10 cell-free supernatants (CFS) evaluated. Amongst the strains evaluated, only Lactobacillus fermentum CRL 251 produced fungus inhibitory peptide/s, smaller than 10 kDa, thermostable, active in the pH range of 4–7 and sensitive to trypsin. This is the first report on antifungal peptide/s produced by a L. fermentum strain.  相似文献   

4.
Quinoa fermentation by lactic acid bacteria (LAB) is an interesting alternative to produce new bakery products with high nutritional value; furthermore, they are suitable for celiac patients because this pseudo-cereal contains no gluten. Growth and lactic acid production during slurry fermentations by Lactobacillus plantarum CRL 778 were greater in quinoa (9.8 log?cfu/mL, 23.1 g/L) than in wheat (8.9 log?cfu/mL, 13.9 g/L). Lactic fermentation indirectly stimulated flour protein hydrolysis by endogenous proteases of both slurries. However, quinoa protein hydrolysis was faster, reaching 40–100 % at 8 h of incubation, while wheat protein hydrolysis was only 0–20 %. In addition, higher amounts of peptides (24) and free amino acids (5 g/L) were determined in quinoa compared to wheat. Consequently, greater concentrations (approx. 2.6-fold) of the antifungal compounds (phenyllactic and hydroxyphenyllactic acids) were synthesized from Phe and Tyr in quinoa by L. plantarum CRL 778, an antifungal strain. These promising results suggest that this LAB strain could be used in the formulation of quinoa sourdough to obtain baked goods with improved nutritional quality and shelf life, suitable for celiac patients.  相似文献   

5.
The house fly, Musca domestica L. (Diptera: Muscidae), is a key problem in animal producing and rearing areas. Currently, the use and abuse of chemical pest‐control compounds has generated resistance in M. domestica and, hence, new approaches are required. In this work, the potential entomopathogenic activity of Lactobacillus johnsonii Fujisawa et al. CRL1647 was evaluated against M. domestica, under laboratory conditions. Bioassays were done for three consecutive years using bacterial cell suspensions (CS) and cell‐free supernatants (CFS) under controlled conditions (27 ± 1 °C, 57 ± 2% r.h., and L12:D12 photoperiod). Both the CS and CFS displayed high levels of larvicidal (96%) and pupicidal (97%) activities. Chemical characterization of the CFS revealed that the bioactive metabolites are acidic compounds, not affected by thermal treatment or by trypsin. Organic acids were identified and quantified by high‐performance liquid chromatography (HPLC); only lactic acid (129.7 ± 1.0 mM), acetic acid (37.3 ± 0.8 mM), and phenyllactic acid (0.3 ± 0.1 mM) were detected. A significant decrease in fecundity of the house flies was observed in females from larvae fed on CFS; male fertility was not affected. Interestingly, only the mixture of organic acids exerted the biological effects. These results suggest that the metabolites synthesized by L. johnsonii CRL1647 can be used in a novel biocontrol strategy against house flies.  相似文献   

6.
A novel two-helper-strain co-culture system (TSCS) was developed to enhance 2-keto-l-gulonic acid (2-KLG) productivity for vitamin C production. Bacillus megaterium and B. cereus (with a seeding culture ratio of 1:3, v/v), used as helper strains, increased the 2-KLG yield using Ketogulonigenium vulgare compared to the conventional one-helper-strain (either B. cereus or B. megaterium) co-culture system (OSCS). After 45 h cultivation, 2-KLG concentration in the TSCS (69 g l?1) increased by 8.9 and 7 % over that of the OSCS (B. cereus: 63.4 g l?1; B. megaterium: 64.5 g l?1). The fermentation period of TSCS was 4 h shorter than that of OSCS (B. cereus). The increased cell numbers of K. vulgare stimulated by the two helper strains possibly explain the enhanced 2-KLG yield. The results imply that TSCS is a viable method for enhancing industrial production of 2-KLG.  相似文献   

7.
The present study aimed to investigate the potential probiotic properties of six lactic acid bacteria (LAB) intended for human use, Lactobacillus rhamnosus ATCC 53103, Lactobacillus casei Shirota, Lactobacillus bulgaricus, L. rhamnosus LC 705, Bifidobacterium lactis Bb12, and Lactobacillus johnsonii La1, and one for animal use, Enterococcus faecium Tehobak, for use as a fish probiotic. The strains for human use were specifically chosen since they are known to be safe for human use, which is of major importance because the fish are meant for human consumption. The selection was carried out by five different methods: mucosal adhesion, mucosal penetration, inhibition of pathogen growth and adhesion, and resistance to fish bile. The adhesion abilities of the seven LAB and three fish pathogens, Vibrio anguillarum, Aeromonas salmonicida, and Flavobacterium psychrophilum, were determined to mucus from five different sites on the surface or in the gut of rainbow trout. Five of the tested LAB strains showed considerable adhesion to different fish mucus types (14 to 26% of the added bacteria). Despite their adhesive character, the LAB strains were not able to inhibit the mucus binding of A. salmonicida. Coculture experiments showed significant inhibition of growth of A. salmonicida, which was mediated by competition for nutrients rather than secretion of inhibitory substances by the probiotic bacteria as measured in spent culture liquid. All LAB except L. casei Shirota showed tolerance against fish bile. L. rhamnosus ATCC 53103 and L. bulgaricus were found to penetrate fish mucus better than other probiotic bacteria. Based on bile resistance, mucus adhesion, mucus penetration, and suppression of fish pathogen growth, L. rhamnosus ATCC 53103 and L. bulgaricus can be considered for future in vivo challenge studies in fish as a novel and safe treatment in aquaculture.  相似文献   

8.
Vitamin B12 is an essential nutrient required for crucial metabolic processes in humans. Vitamin B12-producing lactic acid bacteria (LAB) have been attracting increased attentions currently because of the generally recognized as safe (GRAS) status. Most of recent studies focused on Lactobacillus, and little is known about B12-producing Enterococcus. In the present study, five Enterococcus strains isolated from infant feces were identified as vitamin B12 producers. Among them, Enterococcus faecium LZ86 had the highest B12 production (499.8 ± 83.7 μg/L), and the B12 compound from LZ86 was identified as the biological active adenosylcobalamin, using reversed phase high-performance liquid (RP-HPLC) chromatogram. We examined basic probiotic and safety properties of E. faecium LZ86 and found that it was able to survive harsh environmental conditions (hot temperature, cold temperature, ethanol and osmotic stresses), tolerate gastric acid (pH 2.0, 3 h) and bile salts (0.3%), and adhere to Caco-2 cells. We also showed that E. faecium LZ86 is devoid of transferable antibiotic resistance and potential virulence factors. Together, here we report a B12-producing E. faecium strain LZ86 firstly, which has desirable probiotic properties and may serve as a good candidate for vitamin B12 fortification in food industry.  相似文献   

9.
Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Four bacterial strains, designated as ALT3A, ALT3B, ALT17, and MR1, produced inhibitory effects on growth of LAB. Sequencing of rRNA identified these strains as species of Bacillus subtilis (ALT3A and ALT3B) and B. cereus (ALT17 and MR1). Cell mass from colonies and agar samples from inhibition zones were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. The spectra of ALT3A and ALT3B showed a strong signal at m/z 1,060, similar in mass to the surfactin family of antimicrobial lipopeptides. ALT3A and ALT3B were analyzed by zymogram analysis using SDS-PAGE gels placed on agar plates inoculated with LAB. Cell lysates possessed an inhibitory protein of less than 10 kDa, consistent with the production of an antibacterial lipopeptide. Mass spectra of ALT17 and MR1 had notable signals at m/z 908 and 930 in the whole cell extracts and at m/z 687 in agar, but these masses do not correlate with those of previously reported antibacterial lipopeptides, and no antibacterial activity was detected by zymogram. The antibacterial activities produced by these strains may have application in the fuel ethanol industry as an alternative to antibiotics for prevention and control of bacterial contamination.  相似文献   

10.
Screening and molecular identification of probiotic lactic acid bacteria (LAB) in effluents generated during the production of ogi, a fermented cereal (maize, millet, and sorghum) were done. LAB were isolated from effluents generated during the first and second fermentation stages in ogi production. Bacterial strains isolated were identified microscopically and phenotypically using standard methods. Probiotic potential properties of the isolated LAB were investigated in terms of their resistance to pH 1.5 and 0.3% bile salt concentration for 4 h. The potential LAB isolates ability to inhibit the growth of pathogenic organisms (Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium) was evaluated in vitro. The pH and LAB count in the effluents ranged from 3.31 to 4.49 and 3.67 to 4.72 log cfu/ml, respectively. A total of 88 LAB isolates were obtained from the effluents and only 10 LAB isolates remained viable at pH 1.5 and 0.3% bile salt. The zones of inhibition of the LAB isolates with probiotic potential ranged from 7.00 to 24.70 mm against test organsisms. Probiotic potential LAB isolates were molecularly identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus reuteri, Enterococcus faecium, Pediococcus acidilactici, Pediococcus pentosaceus, Enterococcus faecalis, and Lactobacillus brevis. Survival and proliferation of LAB isolates at low pH, 0.3% bile salt condition, and their inhibition against some test pathogens showed that these LAB isolates could be a potential probiotics for research and commercial purposes.  相似文献   

11.
The objective of this study was to characterise lactic acid bacteria (LAB) isolated from faecal samples of healthy Ethiopian infants, with emphasis on bacteriocin production and antibiotic susceptibility. One hundred fifty LAB were obtained from 28 healthy Ethiopian infants. The isolates belonged to Lactobacillus (81/150), Enterococcus (54/150) and Streptococcus (15/150) genera. Lactobacillus species were more abundant in the breast-fed infants while Enterococcus dominated the mixed-fed population. Bacteriocin-producing LAB species were isolated from eight of the infants. Many different bacteriocins were identified, including one new bacteriocin from Streptococcus salivarius, avicin A (class IIa) from Enterococcus avium, one class IIa bacteriocin from Enterococcus faecalis strains, one unknown bacteriocin from E. faecalis and two unknown bacteriocins from Lactobacillus fermentum strains and the two-peptide gassericin T from Lactobacillus gasseri isolate. Susceptibility tests performed for nine antibiotics suggest that some lactobacilli might have acquired resistance to erythromycin (3 %) and tetracycline (4 %) only. The streptococci were generally antibiotic sensitive except for penicillin, to which they showed intermediate resistance. All enterococci were susceptible to ampicillin while 13 % showed penicillin resistance. Only one E. faecalis isolate was vancomycin-resistant. Tetracycline (51 %) and erythromycin (26 %) resistance was prevalent among the enterococci, but multidrug resistance was confined to E. faecalis (47 %) and Enterococcus faecium (33 %). Screening of enterococcal virulence traits revealed that 2 % were β-haemolytic. The structural genes of cytolysin were detected in 28 % of the isolates in five enterococcal species, the majority being E. faecalis and Enterococcus raffinosus. This study shows that bacteriocin production and antibiotic resistance is a common trait of faecal LAB of Ethiopian infants while virulence factors occur at low levels.  相似文献   

12.
The present study was aimed to investigate the nutritive profiles, microbial counts and fermentation metabolites in rye, Italian rye-grass (IRG) and barley supplemented with Lactobacillus plantarum under the field condition, and its probiotic properties. After preparation of silage, the content of crude protein (CP), crude ash, acid detergent fiber (ADF), and neutral detergent fiber (NDF), microbes such as lactic acid bacteria (LAB), yeast and fungi counts, and fermentation metabolites lactic acid, acetic acid and butyric acid was assessed. Results indicated that the content of ADF and NDF were significantly varied between rye, IRG and barley mediated silages. The content of CP was increased in L. plantarum supplemented with IRG, but slightly decreased in rye and barley mediated silages. The maximum LAB count was recorded at 53.10 × 107 cfu/g in rye, 16.18 × 107 cfu/g in IRG and 2.63 × 107 cfu/g in barley silages respectively. A considerable number of the yeasts were observed in the IRG silages than the rye silages (P < 0.05). The amount of lactic acid production is higher in L. plantarum supplemented silages as compared with control samples (P < 0.05). It was confirmed that higher amount of lactic acid produced only due to more number of LAB found in the silages. L. plantarum was able to survive at low pH and bile salt and the duodenum passage with the highest percentage of hydrophobicity. Furthermore, the strain was sensitive towards the antibiotics commonly used to maintain the microbes in food industrial setups. In conclusion, supplementation of L. plantarum is most beneficial in rye, IRG and barley silage preparations and probiotic characteristics of L. plantarum was an intrinsic feature for the application in the preparation of animal feeds and functional foods.  相似文献   

13.
Bacterial metabolites with communicative functions could provide protection against stress conditions to members of the same species. Yet, information remains limited about protection provided by metabolites in Bacillus cereus and inter-species. This study investigated the effect of extracellular compounds derived from heat shocked (HS) and non-HS cultures of B. cereus and Geobacillus stearothermophilus on the thermotolerance of non-HS vegetative and sporulating B. cereus. Cultures of B. cereus and G. stearothermophilus were subjected to HS (42 or 65 °C respectively for 30 min) or non-HS treatments. Cells and supernatants were separated, mixed in a combined array, and then exposed to 50 °C for 60 min and viable cells determined. For spores, D values (85 and 95 °C) were evaluated after 120 h. In most cases, supernatants from HS B. cereus cultures added to non-HS B. cereus cells caused their thermotolerance to increase (D 50 12.2–51.9) when compared to supernatants from non-HS cultures (D 50 7.4–21.7). While the addition of supernatants from HS and non-HS G. stearothermophilus cultures caused the thermotolerance of non-HS cells from B. cereus to decrease initially (D 50 3.7–7.1), a subsequent increase was detected in most cases (D 50 18–97.7). In most cases, supernatants from sporulating G. stearothermophilus added to sporulating cells of B. cereus caused the thermotolerance of B. cereus 4810 spores to decline, whereas that of B. cereus 14579 increased. This study clearly shows that metabolites in supernatants from either the same or different species (such as G. stearothermophilus) influence the thermotolerance of B. cereus.  相似文献   

14.
Nine lactic acid bacteria strains showing bacteriocin-like activity were isolated from various fresh fish viscera. The following species were identified based on 16S rDNA sequences: Enterococcus durans (7 isolates), Lactococcus lactis (1) and Enterococcus faecium (1). These strains were active against Listeria innocua and other LAB. Random amplified polymorphic DNA analyses showed four major patterns for the E. durans species. PCR analyses revealed a nisin gene in the genome of the Lc. lactis strain. Genes coding enterocins A, B and P were found in the genome of the E. faecium isolate. Enterocins A and B genes were also present in the genome of E. durans GM19. Hence, this is the first report describing E. durans strains producing enterocins A and B. Electrospray ionization mass spectrometry revealed that the purified bacteriocin produced by the E. durans GMT18 strain had an exact molecular mass of 6,316.89 Da. This bacteriocin was designated as durancin GMT18. Edman sequencing failed to proceed; suggesting that durancin GTM18 may contain terminal lanthionine residues. Overall, the results obtained revealed the presence of a variety of enterococci in Mediterranean fish viscera, as evidenced by their genetic profiles and abilities to produce different bacteriocins. These strains could be useful for food biopreservation or as probiotics.  相似文献   

15.
The effect of the administration of milk fermented with lactic acid bacteria to calves was evaluated. The strains included were: Lactobacillus murinus CRL1695, Lact. mucosae CRL1696, Lact. johnsonii CRL1693, and Lact. salivarius CRL1702, which were selected for their beneficial and functional properties and isolated from healthy calves in the northwestern region of Argentina. The trial was conducted on a dairy farm located in Tucumán (Holando-Argentino calves). A randomized controlled trial was performed in which 56 new-born animals were divided into two groups: the treated group (T) received the fermented milk for 60 days and the control group (C) only milk. The animals were fed a solid diet ad libitum. The treated group was given a daily dose of 1 × 109CFU of the probiotic fermented milk while the control group was fed milk. Body weight and biometrical parameters were recorded between 15 and 60 days of age, and average daily gain was calculated with three samplings per animal throughout the trial. Rectal swabs and fecal and blood samples were also collected. Results showed the efficacy of the probiotic: lower morbidity and mortality of calves (morbidity was 69.20% in animals without the probiotic, and 46.15% in probiotic-treated animals, with P = 0.09; mortality in C was 34.61 and 7.69% in animals fed with ferment milk; P = 0.02).The calves fed with probiotic evidenced an improvement in nutritional parameters, body condition and weight gain (health index P = 0.01; average daily gain P = 0.03).Viable bacterial numbers showed no differences between the two experimental groups. Hematological parameters and serum proteins were not modified by the treatment. The results suggest that the fermented milk containing lactic acid bacteria can be a viable veterinary product for young calves due to its beneficial effects on health and growth.  相似文献   

16.
Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T, Acetobacter fabarum LMG 24244T, and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus 386B performed a fast oxidation of ethanol and lactic acid into acetic acid and acetoin, respectively. Only A. pasteurianus 386B and A. ghanensis LMG 23848T oxidized mannitol into fructose. Coculture fermentations with A. pasteurianus 386B or A. ghanensis LMG 23848T and Lactobacillus fermentum 222 in CPSM for lactic acid bacteria (LAB) containing glucose, fructose, and citric acid revealed oxidation of lactic acid produced by the LAB strain into acetic acid and acetoin that was faster in the case of A. pasteurianus 386B. A triculture fermentation with Saccharomyces cerevisiae H5S5K23, L. fermentum 222, and A. pasteurianus 386B, using CPSM for LAB, showed oxidation of ethanol and lactic acid produced by the yeast and LAB strain, respectively, into acetic acid and acetoin. Hence, acetic acid and acetoin are the major end metabolites of cocoa bean fermentation. All data highlight that A. pasteurianus 386B displayed beneficial functional roles to be used as a starter culture, namely, a fast oxidation of ethanol and lactic acid, and that these metabolites play a key role as substrates for A. pasteurianus in its indispensable cross-feeding interactions with yeast and LAB during cocoa bean fermentation.  相似文献   

17.
Benzo[a]pyrene (BaP) accumulates in marine organisms and contaminated coastal areas. The biotreatment of waste water using saline-alkaline-tolerant white rot fungi (WRF) represents a promising method for removing BaP under saline-alkaline conditions based on WRF’s ability to produce ligninolytic enzymes. In a pre-screening for degradation of polycyclic aromatic hydrocarbons of 82 fungal strains using Remazol brilliant blue R, Bjerkandera adusta SM46 exhibited the highest tolerance to saline-alkaline stress. Moreover, a B. adusta culture grown in BaP-containing liquid medium exhibited resistance to salinities up to 20 g l?1. These conditions did not inhibit fungal growth or the expression of manganese peroxidase (MnP) or lignin peroxidase (LiP). The degradation rate also became higher as salinity increased to 20 g l?1. Fungal growth and enzyme expression were inhibited at a salinity of 35 g l?1. These inhibitory effects directly decreased the degradation rate (>24 %). The presence of MnSO4 as an inducer improved the degradation rate and enzyme expression. MnP and LiP activity also increased by seven- and fivefold, respectively. SM46 degraded BaP (38–89 % over 30 days) in an acidic environment (pH 4.5) and under saline-alkaline stress conditions (pH 8.2). Investigating the metabolites produced revealed BaP-1,6-dione as the main product, indicating the important role of ligninolytic enzymes in initializing BaP cleavage. The other metabolites detected, naphthalene acetic acid, hydroxybenzoic acid, benzoic acid, and catechol, may have been ring fission products. The wide range of activities observed suggests that B. adusta SM46 is a potential agent for biodegrading BaP under saline conditions.  相似文献   

18.
A simple and rapid assay for the detection of Bacillus weihenstephanensis isolates and other psychrotolerant strains in the Bacillus cereus group was developed. It is based on the presence of a nucleotide substitution at position 795 on the housekeeping pycA gene in all B. weihenstephanensis strains. This mutation creates a PstI recognition site. It is absent in mesophilic strains in the B. cereus group. The pycA gene is amplified by PCR and the amplicons submitted to PstI digestions. In mesophilic strains, a single band of 1,718 bp in length is visualised on an agarose gel. In B. weihenstephanensis strains and in all other psychrotolerant strains from the B. cereus group, the amplicons are cleaved and two bands of 1,175 and 543 bp, respectively, are visualised. This method could be used for the screening of B. cereus collections and for the identification of psychrotolerant and mesophilic isolates from different environments.  相似文献   

19.

Introduction

Lactic acid bacteria (LAB) play an important role in the food industry as starter cultures to manufacture fermented food, and as probiotics. In recent years, there has been an increasing interest in using LAB cultures for biopreservation of food products. It is therefore of great interest to study the detailed metabolism of these bacteria.

Objectives

This study aimed at developing an efficient analytical protocol for real-time in vitro NMR measurements of LAB fermentations, from sample preparation, over data acquisition and preprocessing, to the extraction of the kinetic metabolic profiles.

Method

The developed analytical protocol is applied to an experimental design with two LAB strains (Lactobacillus rhamnosus DSM 20021 and Lactobacillus plantarum subsp. plantarum DSM 20174), two initial pH levels (pHi 6.5 and 5.5), two levels of glucose concentration (2.5 and 0.25 g/l), and two batch fermentation replicates.

Results

The design factors proved to be strongly significant and led to interesting biological information. The protocol allowed for detailed real-time kinetic analysis of 11 major metabolites involved in the glycolysis, pyruvate catabolism, amino acid catabolism and cell energy metabolism. New biological knowledge was obtained about the different patterns of glutamine and aspartic acid consumption by the two strains. It was observed that L. plantarum consumes more glutamine at low pH (pH 5.5) whereas the opposite applies to L. rhamnosus. Regarding aspartic acid, both of the strains consume it higher at low pH, and overall L. plantarum consumes it more. L. rhamnosus did not consume aspartic acid at pH 6.5.

Conclusion

The developed analytical protocol for real-time in vitro NMR measurements of bacterial metabolism allows a relatively easy investigation of different fermentation factors such as new strains, new substrates, cohabitations, temperature, and pH and has a great potential in biopreservation studies to discover new efficient bioprotective cultures.
  相似文献   

20.
The objective of the present study was to develop a probiotic of canine-origin for its potential application in pet nutrition. Accordingly, 32 lactic acid bacteria (LAB) strains were isolated from faeces of dogs, out of which 9 strains were short-listed for further in vitro testing based on the aggregation time and cell surface hydrophobicity. The results of acid-, bile- and phenol-tolerance tests indicated that out of the nine, isolate cPRO23 was having better resistance to these adverse conditions likely to be encountered in the gastrointestinal tract. The isolate also showed optimal enzymatic activities for amylase, lipase and protease. Further assessments also indicated its superiority in terms of co-aggregation and antagonistic activity against pathogenic strains of Salmonella typhimurium and Salmonella enteritidis. Subsequently, the isolate was identified through 16S rRNA sequencing and sequence homology, and designated as Lactobacillus johnsonii CPN23. The candidate probiotic was then evaluated in vivo using 15 adult Labrador dogs, divided into 3 groups, viz. CON (with no probiotics), dPRO (with Lactobacillus acidophilus NCDC 15 as a conventional dairy-origin probiotic) and cPRO (with L. johnsonii CPN23 as a canine-origin probiotic). Results of the 9-week study indicated that supplementation of cPRO improved (P < 0.05) the faecal concentration of acetate and butyrate with a concomitant reduction (P < 0.05) in faecal ammonia. The cell-mediated immune response, assessed as delayed-type hypersensitivity reaction to phytohaemagglutinin-P, was better (P < 0.05) in dogs fed cPRO as compared to the CON dogs. There were, however, no variations evident in the antibody response to sheep-erythrocytes among the three groups. It is concluded that the canine-origin L. johnsonii CPN23, in addition to possessing all the in vitro functional attributes of a candidate probiotic, also has the potential to be used as a probiotic in pet nutrition programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号