首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attempts were made with success to produce uridine 5′-monophosphate (UMP) from orotic acid by a recombinant Saccharomyces cerevisiae strain pYX212-URA5/BJX12, using the whole cell biocatalytic process. URA5 and URA3 genes, encoding orotate phosphoribosytransferase (OPRTase) and orotidine monophosphate decarboxylase (ODCase), respectively were successfully overexpressed in the industrial yeast strain. As a result, S .cerevisae pYX212-URA5/BJX12 exhibited the highest biocatalytic ability, in contrast with the original industrial yeast strain and S. cerevisae pYX212/BJX12 that overexpressed ODCase only. It indicated that the first step of UMP production from orotic acid is a rate-limiting step. Effects of cultivation for the recombinant strain and biocatalytic reaction conditions on UMP production were also investigated. Cultivating the cells in malt extract medium for 36 h in the exponential phase of growth is in favor of converting orotic acid to UMP. To acquire a higher UMP yield, the conditions of the whole cell biocatalytic reaction were optimized and up to 3.8 g l−1 UMP was produced in 24 h consequently. The yield was fivefold higher than the original UMP yield from the industrial yeast. In addition, the accumulation of 2.6 g l−1 UDP (uridne 5′-diphosphate) in the process demonstrated the possibility for further genetic manipulation: deleting the UMPK (Uridylate Kinase, catalyzing UMP–UDP).  相似文献   

2.
3.
The accumulation of 5′-inosinic acid (IMP) by a mutant, KY 13102, induced from Brevibacterium ammoniagenes ATCC 6872 by ultraviolet light irradiation, was examined. Although growth was stimulated by adenine or adenosine, the microorganism showed fair growth in the medium containing amino acids but no adenine. Among six kinds of natural nutrients tested, meat extract and Casamino Acids were suitable for the accumulation of IMP. Manganese ion strongly affected growth, the accumulation of IMP and hypoxanthine, and cell morphology. Among amino acids tested, L-methionine, L-proline, and L-valine stimulated IMP accumulation. In the medium containing 1.0 g of L-proline per liter, 12.8 mg of IMP per ml was accumulated. The mechanism of IMP accumulation by the mutant is discussed.  相似文献   

4.
A novel process for producing inosine 5′-monophosphate (5′-IMP) has been demonstrated. The process consists of two sequential bioreactions; the first is a fermentation of inosine by a mutant of Corynebacterium ammoniagenes, and the second is a unique phosphorylating reaction of inosine by guanosine/inosine kinase (GIKase). GIKase was produced by an Escherichia coli recombinant strain, MC1000(pIK75), which overexpressed the enzyme up to 50% of the total cellular protein. The overproducing plasmid, pIK75, which was randomly screened out from deletion plasmids with various lengths of intermediate sequence between the E. coli trpL Shine-Dalgarno sequence, derived from the vector plasmid, and the start codon of the GIKase structural gene. In pIK75, the start ATG was placed 16 bp downstream of the trpL Shine-Dalgarno sequence under the control of the E. coli trp promoter. Fermentation of inosine and its phosphorylation were sequentially performed in a 5-l jar fermenter. At the end of inosine fermentation by C. ammoniagenes KY13761, culture broth of MC1000(pIK75) was mixed with that of KY13761 to start the phosphorylating reaction. Inosine in the reaction mixture was stoichiometrically phosphorylated, and 91 mM 5′-IMP accumulated in a 12-h reaction. This new biological process has advantages over traditional methods for producing 5′-IMP. Received: 7 April 1997 / Received last revision: 18 July 1997 / Accepted: 27 July 1997  相似文献   

5.
Using cytokinin dependent soybean callus and HPLC analysis it was shown that soybean callus rapidly metabolises ribosylzeatin-5-monophosphate to biologically active compounds which co-chromatographed with trans-ribosylzeatin and trans-zeatin.Abbreviations Z zeatin - RZ ribosylzeatin - RZMP ribosylzeatin-5-monophosphate  相似文献   

6.
A manganese-insensitive mutant, KY 13105, of Brevibacterium ammoniagenes which accumulates considerable amounts of 5' inosinic acid (IMP) in the presence of 100 to 1,000 mug of Mn(2+) per liter was obtained from an IMP-producing mutant of a manganese-sensitive strain, KY 13102. The effects of Mn(2+) at 0 to 30 mug/liter on IMP accumulation by KY 13105 were similar to those by KY 13102. However, the accumulation of IMP by KY 13105 was not affected by 100 to 1,000 mug of Mn(2+) per liter, showing a clear difference from KY 13102. The accumulation of IMP by KY 13105 was always accompanied by cellular morphological changes irrespective of Mn(2+) concentration. In the presence of Mn(2+), factors which affect IMP accumulation by KY 13105 were examined. Most of the nutrients tested stimulated IMP accumulation at a relatively low concentration (2 g/liter). Iron, calcium, and zinc were found to be essential for IMP accumulation and were independent of Mn(2+). Biotin regulated the growth but not the accumulation of IMP. Under limited or surplus amounts of Mn(2+), the dynamics of IMP fermentation were followed. Under both conditions, the fermentations proceeded in a similar way. The morphological changes were found to be closely related to IMP accumulation.  相似文献   

7.
The release of (14)CO(2) from [7-(14)C]orotic acid was measured in isolated perfused normal and regenerating rat livers. With some limitations, the release of (14)CO(2) from [7-(14)C]orotic acid can be used to estimate UMP synthesis in perfused livers. Isolated perfused livers rapidly pick up labelled orotic acid added to perfusate and convert most of it into UMP. Perfused regenerating livers produce approx. 2.5 times as much UMP/g of liver as do perfused normal livers. However, the absolute amount of orotic acid converted into UMP is higher in perfused normal livers than in perfused regenerating livers. Perfused regenerating livers do not differ in their orotic acid uptake and UMP synthesis from livers of comparable size in which regeneration is not taking place. The total amount of orotic acid taken up by the liver (rather than the rate of uptake) and the size of the liver appear to be the determining factors in UMP production. The results suggest that the decrease in liver size caused by partial hepatectomy may be in itself sufficient to account for an increase in the flow of metabolites in the pyrimidine pathway at the early stages of liver regeneration.  相似文献   

8.
Although most microorganisms with genetic blocks in the purine nucleotide sequence excrete breakdown products, a coryneform bacterium was found to accumulate intact 5′-nucleotides in the extracellular medium. Adenineless mutants accumulated 0.4 to 0.6 g of inosine-5′-monophosphate per liter of broth. The yield of this nucleotide was increased to 0.8 to 0.9 g per liter when such mutants were mutated to xanthine dependence. Induction of a specific guanine requirement in adenineless auxotrophs resulted in cultures capable of producing high yields of xanthosine-5′-monophosphate (3 to 4 g per liter). Pure xanthosine-5′-monophosphate was isolated from broth by a procedure involving ion-exchange chromatography, charcoal adsorption, and barium precipitation.  相似文献   

9.
Ribonucleotide reduction, the unique step in the pathway to DNA synthesis, is catalyzed by enzymes via radical-dependent redox chemistry involving an array of diverse metallocofactors. The nucleotide reduction gene (nrdF) encoding the metallocofactor containing small subunit (R2F) of the Corynebacterium ammoniagenes ribonucleotide reductase was reintroduced into strain C. ammoniagenes ATCC 6872. Efficient homologous expression from plasmid pOCA2 using the tac-promotor enabled purification of R2F to homogeneity. The chromatographic protocol provided native R2F with a high ratio of manganese to iron (30:1), high activity (69 μmol 2'-deoxyribonucleotide·mg?1 ·min?1) and distinct absorption at 408 nm, characteristic of a tyrosyl radical (Y˙), which is sensitive to the radical scavenger hydroxyurea. A novel enzyme assay revealed the direct involvement of Y˙ in ribonucleotide reduction because 0.2 nmol 2'-deoxyribonucleotide was formed, driven by 0.4 nmol Y˙ located on R2F. X-band electron paramagnetic resonance spectroscopy demonstrated a tyrosyl radical at an effective g-value of 2.004. Temperature dependent X/Q-band EPR studies revealed that this radical is coupled to a metallocofactor. Similarities of the native C. ammoniagenes ribonucleotide reductase to the in vitro activated Escherichia coli class Ib enzyme containing a dimanganese(III)-tyrosyl metallocofactor are discussed.  相似文献   

10.
Summary This study was undertaken to investigate the mechanism of chemical radiosensitization by halogenated bases incorporated into DNA. Radiation-induced base and sugar-phosphate backbone damage to 5-bromouridine-5-monophosphate (5-BrUMP) was monitored using a flow system connected in series with a recording spectrophotometer, a bromide (Br)-specific ion analyzer and a Technicon auto-sampler. The system was used to assay loss of UV-absorbing 5,6 double-bond, release of Br and inorganic phosphate (Pi) release using an automated colorimetric method, as a function of gamma-ray dose. Results obtained with radical scavengers indicate that, unlike non-halogenated nucleotides where the hydroxyl radical (· OH) is the principal damaging species, 5-BrUMP is damaged by the hydrated electron (e aq ), hydrogen atom (H·) and · OH, producing a high yield of base damage and Br and Pi release in anoxia. Another novel feature of 5-BrUMP radiolysis is that oxygen, by convertinge aq and H· to the unreactive superoxide radical anion (0 2 ), has a protective effect on both base and phosphate ester damage. Under · OH-scavenging conditions, where the radiation yield of reductive debromination is 3.8, there is some Pi release, suggesting the possibility of intramolecular hydrogen atom transfer from the sugar ring to the 5-uracilyl radical and subsequent sugar-phosphate bond cleavage. This hypothesis is supported by the action of oxygen and thiols in modifying thee aq -mediated sugar-phosphate damage.  相似文献   

11.
An enzyme system which could convert orotic acid to uridine-5′-monophosphate (5′-UMP) was found in cell-free extract of a threonine-requiring auxotroph of Micrococcus glutamicus (Syn. Corynebacterium glutamicum) 534 Co-147. This reaction required 5-phosphoribosylpyrophosphate (PRPP) and magnesium ion as essential components. The product of the enzyme reaction was separated by ion exchange resin chromatography and identified to be uridine-5′-monopbosphate. From the stoichiometric studies and other characteristics, it became evident that this enzyme reaction proceeded according to the following equation and was assumed to be catalyzed by orotidine-5′-monophosphate pyrophosphorylase and orotidine-5′-monophosphate decarboxylase. Orotic acid + PRPPMg++5?UMP+PPi+CO2  相似文献   

12.
《Cell differentiation》1980,9(3):169-179
The role of adenosine 3′,5′-monophosphate (cyclic AMP) in the control of Blastocladiella emersonii germination was studied. This differentiative transition may be induced by replacing K+, a classical inducer, by cyclic AMP or by competitive inhibitors of cyclic AMP phosphodiesterase activity. When zoospores are treated simultaneously with two inducers at non-effective concentrations, a synergistic effect is observed between cyclic AMP and either KCl or adenine. The calcium ionophore A23187 per se is not able to elicit germination, but the association of A23187 and sub-optimal concentrations of cyclic AMP is effective. These results suggest that germination may depend on a correlation between the intracellular mobilization of calcium and cyclic AMP levels.  相似文献   

13.
Growth ofLactobacillus acidophilus was inhibited in the presence of deoxyadenosine-5-monophosphate (dAMP). The other purine deoxyribonucleotides and -sides were only weak inhibitors, and pyrimidine deoxyribotides and -sides were inactive. dAMP did not act as an inhibitor if thymine, thymidine, or 5-methyldeoxycytidine-5-monophosphate was present in the medium. The inhibition by dAMP was counteracted by increasing concentrations of deoxyuridine, deoxyuridine-5-monophosphate and, to some extent, adenosine-5-monophosphate. The effect of these substances was proportional to their concentration and competitive in character. The results support the assumption that dAMP inhibits the synthesis of thymine. Mutants ofL. acidophilus resistant to inhibition by dAMP were found.  相似文献   

14.
An enzyme sensor for the determination of adenosine-5′-monophosphate (AMP) concentration in the muscle of fish and shellfish has been developed. The AMP sensor consisted of two immobilized enzyme membranes and an oxygen probe. AMP was oxidized to uric acid by AMP-deaminase, 5′-nucleotidase, nucleoside phosphorylase and xanthine oxidase, and oxygen consumed was monitored amperometrically by an oxygen electrode. The optimum conditions for the enzyme electrode were pH 7.8 and 30°C. Output current was reproducible within 4% of the relative error when a solution containing 10 mm AMP was used. One assay could be completed within 4 min and the sensor was stable for 100 assays over 30 days at 5°C. The sensor was used to determine AMP concentration in bream, Pagrosomus unicolor Quoy and Gaimard; sea bass, Lateolobrax japonicus; flounder, Lepidopsetta bilineata; abalone, Haliotis discus hannai; and arkshell, Anadara broughttoni (Shrenk). AMP in a sample solution was also determined by a conventional method, giving satisfactory comparative results.  相似文献   

15.
Guanosine 3′:5′-monophosphate has a slight hydroosmotic effect on toad urinary bladder. Furthermore, this nucleotide strongly inhibits the responses to 3′:5′-adenosine monophosphate and oxytocin. The response to an increase in medium tonicity is not modified by the guanosine nucleotide. A role for guanosine 3′:5′-monophosphate in the regulation of water permeability in toad urinary bladder is proposed.  相似文献   

16.
Extracellular nucleotides such as adenosine 5′-triphospate (ATP) and uridine 5′-triphosphate (UTP) interact with P2 purinergic receptors on the surface of phagocytic cells and induce various physiological reactions. In this study, the production of antibody in mice immunized with an inactivated rabies vaccine containing these nucleotides was investigated. Injection of inactivated rabies vaccine with UTP, but not with ATP, induced significantly higher serum antibody production in mice. The enhancement of antibody production by UTP was inhibited by an anti-P2Y4 receptor antibody. In an air pouch experiment, UTP treatment increased the number of monocytes and macrophages infiltrating the pouch and up-regulated the gene expression of IL-4 and IL-13 in the regional lymph nodes. These results suggested that UTP admixed with rabies vaccine activates Th2 cells and induces a humoral immune response. Furthermore, the survival rate of mice immunized with a rabies vaccine admixed with UTP before rabies virus challenge was slightly higher than that of control mice. In conclusion, UTP can act as a vaccine adjuvant to enhance antibody production against the rabies virus in mice.  相似文献   

17.
18.
19.
Nowadays enzymatic synthesis of nucleic acid derivatives is gaining momentum over traditional chemical synthetic processes. Biotransformations catalyzed by whole cells or enzymes offer an ecofriendly and efficient alternative to the traditional multistep chemical methods, avoiding the use of chemical reagents and organic solvents that are expensive and environmentally harmful. Herein we report for the first time the covalent immobilization a uracil phosphoribosyltransferase (UPRT). In this sense, UPRT from Thermus thermophilus HB8 was immobilized onto glutaraldehyde-activated MagReSyn®Amine magnetic iron oxide porous microparticles (MTtUPRT). According to the catalyst load experiments, MTtUPRT3 was selected as optimal biocatalyst for further studies. MTtUPRT3 was active and stable in a broad range of temperature (70–100 °C) and in the pH interval 6–8, displaying maximum activity at 100 °C and pH 7 (activity 968 IU/gsupport, retained activity 100%). In addition, MTtUPRT3 could be reused up to 8 times in the synthesis of uridine-5′-monophosphate (UMP). Finally, MTtUPRT3 was successfully applied in the sustainable synthesis of different 5-modified uridine-5′-monophosphates at short times. Taking into account these results, MTtUPRT3 would emerge as a valuable biocatalyst for the synthesis of nucleoside monophosphates through an efficient and environmentally friendly methodology.  相似文献   

20.
The effects of adenosine 3′ : 5′-monophosphate (cyclic AMP), guanosine 3′ : 5′-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P).While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10?5 M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP.Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10?8 M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10?8 M, while with cyclic AMP a concentration of 10?5 M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P.These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号