首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Lactate dehydrogenase-X from testes of several rodent species was purified to homogeneity by an 8-(6-aminohexyl)-amino-AMP-Sepharose affinity column. In the case of mouse, the testicle extracts was first heated to 60° for fifteen minutes before the passage through the affinity column. A biospecific elution with reduced NAD+-pyruvate adduct resulted in a homogeneous preparation of lactate dehydrogenase-X. A similar procedure was also employed for the purification of lactate dehydrogenase-X from hamster, guinea pig and rat. After purification by affinity chromatography, lactate dehydrogenase-X was separated from residual somatic lactate dehydrogenase isozymes by DEAF-Sephadex chromatography. Adenosine, AMP, ADP, and ADP-ribose were shown to be coenzyme-competitive inhibitors of lactate dehydrogenase-X. The effectiveness of binding of these compounds increased with the size of the adenosine derivatives employed. Multiple inhibition analysis suggested that these compounds are interacting with the same region of coenzyme-binding site as shown by the mutual exclusion of one another from binding to the enzyme. The data suggest that the binding of coenzyme to the enzyme occurs through interactions involving the adenosine moiety and pyrophosphate grouping. Fluorescence spectroscopy was employed for the study of the mechanism of action of mouse lactate dehydrogenase-X. Both oxidized and reduced coenzymes induced significant quenching of protein fluorescence. Significant enhancements of NADH fluorescence and protein energy transfer were observed upon the addition of lactate dehydrogenase-X to the coenzyme solution. In the presence of lactate dehydrogenase-X and NAD+, the addition of pyruvate or -ketovalerate resulted in a time-dependent quenching of protein fluorescence and an increase in absorbance at 325 nm indicating the formation of a ternary complex. The results of this study suggest a similar molecular mechanism for different lactate dehydrogenase isozymes.To whom inquires should be addressed.NIH visiting fellowThis purification procedure is currently being adopted by Professor Erwin Goldberg at Northwestern University, Evanston, Ill. for large scale preparation of mouse LDH-X.  相似文献   

2.
Human lactate dehydrogenase isozymes, LDH-1 and LDH-5, were inactivated at 25 degrees C and pH 7.5 by N-alkylmaleimides of varying chain length, and by fluorescein mercuric acetate. Second-order rate constants for the inactivation of LDH-5 by N-alkylmaleimides increased with increasing chain length of the maleimide derivative while essentially no chain-length effect was observed in the inactivation of LDH-1. Both isozymes were effectively inactivated by low concentrations of fluorescein mercuric acetate, and in both cases saturation kinetics were observed. Dissociation constants obtained from double-reciprocal plotting methods indicated a twofold better binding of fluorescein mercuric acetate to LDH-1. Protection from fluorescein mercuric acetate by NAD was observed with both enzymes.  相似文献   

3.
Creatine kinase (CK) was used as a marker molecule to examine the side effect of damage to tissues by phenylbutazone (PB), an effective drug to treat rheumatic and arthritic diseases, with horseradish peroxidase and hydrogen peroxide (HRP-H2O2). PB inactivated CK during its interaction with HRP-H2O2, and inactivated CK in rat heart homogenate. PB carbon-centered radicals were formed during the interaction of PB with HRP-H2O2. The CK efficiently reduced electron spin responance signals of the PB carbon-centered radicals. The spin trap agent 2-methyl-2-nitrosopropane strongly prevented CK inactivation. These results show that CK was inactivated through interaction with PB carbon-centered radicals. Sulfhydryl groups and tryptophan residues in CK were lost during the interaction of PB with HRP-H2O2, suggesting that cysteine and tryptophan residues are oxidized by PB carbon-centered radicals. Other enzymes, including alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, but not lactate dehydrogenase, were also inactivated. Sulfhydryl enzymes seem to be sensitive to attack by PB carbon-centered radicals. Inhibition of SH enzymes may explain some of the deleterious effects induced by PB.  相似文献   

4.
Soluble lactate dehydrogenase (EC 1.1.1.27) extracted from brain, skeletal and cardiac muscle and liver of rats, and purified isoenzymes LDH-1 and LDH-5, were incubated with sodium deoxycholate. Deoxycholate almost totally inactivated isoenzyme LDH-5 (A4), whereas it left isoenzyme LDH-1 (B4) unaffected. Tissue lactate dehydrogenase was inactivated to different degrees depending on the origin of the enzyme. Electrophoretic isoenzyme studies of tissue lactate dehydrogenase showed the loss of activity to be quantitatively related to the overall percentage of subunit A distributed among the homotetramer LDH-5 and the heterotetramers LDH-2, LDH-3 and LDH-4. It was concluded that subunit A of lactate dehydrogenase interacts selectively with deoxycholate, irrespective of its association with subunit B. Distinct changes in electrophoretic mobilities of deoxycholate-treated isoenzymes strongly indicated an indiscriminate binding of deoxycholate by all LDH isoenzymes, probably through hydrophobic interactions. The results suggest that the inactivation of the enzyme is non-competitive, but the basis of the selectivity of deoxycholate towards subunit A is not known at present.  相似文献   

5.
The stabilities of nine rat liver cytosol enzymes were compared at a variety of pH values. The cytosol enzymes studied were (a) those with half-lives in vivo of 3 days or longer: lactate dehydrogenase, arginase, glyceraldehyde phosphate dehydrogenase and alanine aminotransferase, (b) those with half-lives in vivo shorter than 2 days; glucokinase, dihydroorotase, serine dehydratase and tyrosine aminotransferase and (c) catalase, which has an intermediate half-life of 2.5 days for the protein protion. All the enzymes were stable in vitro at neurtal and alkaline pH values. However, at acidic pH values (pH 4): the long-lived enzymes (a) were stable; the short-lived enzymes (b) were completely inactivated with one exception; and catalase was partially inactivated. Tyrosine aminotransferase was the exception in that it is a short-lived enzyme in vivo but stable under all conditions tested in vitro. The finding that long-lived enzymes are stable in an acid milieu and short-lived enzymes are generally unstable was only observed if certain ligands (NAD+, pyridoxal 5'-phosphate, Mn2+, amino acids) were added to the invitro system. Lysosomal extracts did not accelerate the rate of inactivation of any cytosol enzyme in acidic solutions. These results indicate that if degradation of intracellular enzymes occurs in lysosomes, acid inactivation and denaturation of enzymes may be the initial event in determining the functional half-lives of the enzymes in vivo.  相似文献   

6.
A protease from Tetrahymena pyriformis inactivated eight of nine commercially available enzymes tested, including lactate deyhdrogenase, isocitrate dehydrogenase (TPN-specific), glucose-6 phosphate dehydrogenase, D-amino acid oxidase, fumarase, pyruvate kinase, hexokinase, and citrate synthase. Urate oxidase was not inactivated. Inactivation occurred at neutral pH, was prevented by inhibitors of the protease, and followed first order kinetics. In those cases tested, inactivation was enhanced by mercaptoethanol. Most of the enzyme-inactivating activity was due to a protease of molecular weight 25,000 that eluted from DEAE-Sephadex at 0.3 M KCl. A second protease of this molecular weight, which was not retained by the gel, inactivated only isocitrate dehydrogenase and D-amino acid oxidase. These two proteases could also be distinguished by temperature and inhibitor sensitivity. Two other protease peaks obtained by DEAE-Sephadex chromatography had little or no no enzyme inactivating activity, while another attacked only D-amino acid oxidase. At least six of the enzymes could be protected from proteolytic inactivation by various ligands. Isocitrates dehydrogenase was protected by isocitrate, TPN, or TPNH, glucose-6-dehydrogenase by glucose-6-P or TPN, pyruvate kinase by phosphoenolypyruvate or ADP, hexokinase by glucose, and fumarase by a mixture of fumarate and malate. Lactate dehdrogenase was not protected by either of its substrates of coenzymes. Citrate synthase was probably protected by oxalacetate. Our data suggest that the protease or proteases discussed here may participate in the inactivation or degradation of a least some enzymes in Tetrahymena. Since the inactivation occurs at neutral pH, this process could be regulated by variations in the cellular levels of substrates, coenzymes, or allosteric regulators resulting form changes in growth conditions or growth state. Such a mechanism would permit the selective retention of enzymes of metabolically active pathways.  相似文献   

7.
Thein vitro inhibition of several rat testis dehydrogenases by gossyPol was examined. Inclusion of the coenzyme (substrate for NADP+-isocitrate dehydrogenase) in the Preincubation mixture containing the enzyme and gossyPol, Protected the enzymes against inhibition by gossyPol. Lactic dehydrogenase-X was amongst the least Protected enzymes. This, couPled with its lowK i for gossyPol makes it one of the most vulnerable target enzymesin vivo for gossyPol action. The inhibition kinetics for lactic dehydrogenase-X were comPetitive when NADH was Present during Preincubation, but non-comPetitive when the coenzyme was excluded during Preincubation. In the latter condition, the enzyme seems to undergo Progressive inactivation with time causing a nonreversible tyPe of inhibition.  相似文献   

8.
The rate constants for inactivation of lactate dehydrogenase and alcohol dehydrogenase in solution at 65 degrees C (pH 7,5) are 0,72 and 0,013 min-1, respectively. The enzyme incorporation into acrylamide gels results in immobilized enzymes, whose residual activity is 18--25% of the original one. In 6,7% gels the rate of thermal inactivation for lactate dehydrogenase is decreased nearly 10-fold, whereas the inactivation rate for alcohol dehydrogenase is increased 4,6-fold as compared to the soluble enzymes. In 14% and 40% gels the inactivation constants for lactate dehydrogenase are 6,3.10(-3) and 5,9.10(-4) min-1, respectively. In 60% gels the thermal inactivation of lactate dehydrogenase is decelerated 3600-fold as compared to the native enzyme. The enthalpy and enthropy for the inactivation of the native enzyme are equal to 62,8 kcal/mole and 116,9 cal/(mole.grad.) for the native enzyme and those of gel-incorporated (6,7%) enzyme -- 38,7 kcal/mole and 42 cal/(mole.grad.), respectively. The thermal stability of alcohol dehydrogenase in 60% gels is increased 12-fold. To prevent gel swelling, methacrylic acid and allylamine were added to the matrix, with subsequent treatment by dicyclohexylcarbodiimide. The enzyme activity of the modified gels is 2,7--3% of that for the 6,7% gels. The stability of lactate dehydrogenase in such gels is significantly increased. A mechanism of stabilization of the subunit enzymes in highly concentrated gels is discussed.  相似文献   

9.
The mechanism of isoproterenol and N6,O2'-dibutyryl adenosine 3':5'-monophosphate (dibutyryl cAMP) induction of lactate dehydrogenase (EC 1.1.1.27) was investigated in the C6 rat glioma cell line. [3H]Leucine-labeled lactate dehydrogenase in noninduced and induced cells was quantitatively immunoprecipitated with rabbit anti-rat lactate dehydrogenase-5 antiserum. The immunoprecipitates were analyzed for 3H-labeled lactate dehydrogenase by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels and isoelectrofocusing. Using this technique, it was shown that isoproterenol + 3-isobutyl-1-methylxanthine and dibutyryl cAMP cause an increase of the [3H]leucine incorporation into glioma cell lactate dehydrogenase. Analysis of the kinetics of induction and deinduction revealed no change in the rate of degradation of lactate dehydrogenase in the presence and absence of inducing agent, indicating that the induction was due to an increase in the rate of synthesis of the enzyme. The increased rate of synthesis was prevented by actinomycin D. Isoproterenol + 3-isobutyl-1-methylxanthine increased only the specific rate of synthesis of lactate dehydrogenase-5 isozyme and of the M subunit. The mechanism was further studied by assaying the level of functional mRNA coding for lactate dehydrogenase in a reticulocyte cell-free protein-synthesizing system using glioma cell poly(A)-containing RNA isolated from either isoproterenol or dibutyryl cAMP-induced cells. Analysis of the immunoprecipitated translation product by isoelectrofocusing revealed that isoproterenol or dibutyryl cAMP produced an approximately 8-fold stimulation of the poly(A) + RNA-directed synthesis of the lactate dehydrogenase M subunit. These data demonstrate that isoproterenol and dibutyryl cAMP control the level of functionally active lactate dehydrogenase mRNA in glioma cells which, in turn, determines the extent of synthesis of the lactate dehydrogenase M subunit.  相似文献   

10.
The circular dichroism bands of (+) gossypol in the spectral region 300-400 nm have been shown to be sensitive to interactions with proteins. Using CD spectroscopy, gossypol has been shown to interact with lactate dehydrogenase, malate dehydrogenase, alkaline phosphatase, lysozyme, protamine and poly-L-lysine. Binding to proteins generally results in a pronounced red shift of the long wavelength CD band (approximately 380-430 nm) accompanied by a reduction in ellipticity. The changes in spectral parameters of the 1Lb binaphthyl transition may reflect a distortion from a nearly perpendicular gossypol conformation, on binding to proteins.  相似文献   

11.
The stabilities of nine rat liver cytosol enzymes were compared at a variety of pH values. The cytosol enzymes studied were (a) those with half-lives in vivo of 3 days or longer: lactate dehydrogenase, arginase, glyceraldehyde phosphate dehydrogenase and alanine aminotransferase, (b) those with half-lives in vivo shorter than 2 days; glucokinase, dihydroorotase, serine dehydratase and tyrosine aminotransferase and (c) catalase, which has an intermediate half-life of 2.5 days for the protein portion. All the enzymes were stable in vitro at neutral and alkaline pH values. However, at acidic pH values (pH 4): the long-lived enzymes (a) were stable; the short-lived enzymes (b) were completely inactivated with one exception; and catalase was partially inactivated. Tyrosine aminotransferase was the exception in that it is a short-lived enzyme in vivo but stable under all conditions tested in vitro. The finding that long-lived enzymes are stable in an acid milieu and short-lived enzymes are generally unstable was only observed if certain ligands (NAD+, pyridoxal 5′-phosphate, Mn2+, amino acids) were added to the iv vitro systems. Lysosomal extracts did not accelerate the rate of inactivation of any cytosol enzyme in acidic solutions. These results indicate that if degradation of intracellular enzymes occurs in lysosomes, acid inactivation and denaturation of enzymes may be the initial event in determining the functional half-lives of the enzymes in vivo.  相似文献   

12.
Synthetic part sequences of human pituitary growth hormone (hGH 176–191 and hGH 177–191) corresponding to residues 176–191 or 177–191 of the hormone have been tested for their effects on glycogen and pyruvate metabolism in the rat, both in vivo and in vitro. When injected, the peptides caused transient increases in blood glucose and lactate, while decreasing the activity ratio of glycogen synthase in muscle, adipose tissue and liver and of pyruvate dehydrogenase in muscle and adipose tissue, but not in liver. These decreases were associated with the conversion of the enzymes from their active to their inactive forms, since the peptides did not affect the total amount of either the synthase or the dehydrogenase. The time course of the effect on the enzymes was similar to that for the effect on blood metabolites, and responses for synthase were produced over the range 0.07–7 nmols hGH 177–191/kg body weight. Phosphorylase activity was not affected by the peptides, nor was the capacity to dispose of injected L-lactate. Experiments with adipocytes and hepatocytes showed that the peptides also affected glycogen synthase and pyruvate dehydrogenase activities in vitro. The peptides had no effect on the overall rate of gluconeogenesis from lactate by hepatocytes. However, at times corresponding to those at which glycogen synthase was inactivated, the peptides caused increased incorporation of lactate into free glucose and decreased incorporation into glycogen. It was concluded that the peptides acted directly on their target tissues, and that the observed hyperlactataemia was the result of the inactivation of pyruvate dehydrogenase. The addition lactate increased the flux through the gluconeogenic pathway, and appeared as glucose because the peptide also inactivated glycogen synthase. Thus, the hyperglycaemia produced by hGH 177–199 and related peptides is explicable in terms of a modified Cori Cycle.  相似文献   

13.
1. Pig M4 lactate dehydrogenase treated in the dark with pyridoxal 5'-phosphate at pH8.5 and 25 degrees C loses activity gradually. The maximum inactivation was 66%, and this did not increase with concentrations of pyridoxal 5'-phosphate above 1 mM. 2. Inactivation may be reversed by dialysis or made permanent by reducing the enzyme with NaBH4. 3. Spectral evidence indicates modification of lysine residues, and 6-N-pyridoxyl-lysine is present in the hydrolsate of inactivated, reduced enzyme. 4. A second cycle of treatment with pyridoxal 5'-phosphate and NaBH4 further decreases activity. After three cycles only 9% of the original activity remains. 5. Apparent Km values for lactate and NAD+ are unaltered in the partially inactivated enzyme. 6. These results suggest that the covalently modified enzyme is inactive; failure to achieve complete inactivation in a single treatment is due to the reversibility of Schiff-base formation and to the consequent presence of active non-covalently bonded enzyme-modifier complex in the equilibrium mixture. 7. Although several lysine residues per subunit are modified, only one appears to be essential for activity: pyruvate and NAD+ together (both 5mM) completely protect against inactivation, and there is a one-to-one relationship between enzyme protection and decreased lysine modification. 8. NAD+ or NADH alone gives only partial protection. Substrates give virtually none. 9. Pig H4 lactate dehydrogenase is also inactivated by pyridoxal 5'-phosphate. 10. The possible role of the essential lysine residue is discussed.  相似文献   

14.
The kinetics of photoinactivation of cardiac (H4) and muscular (M4) isoforms of lactate dehydrogenase irradiated by UV light (240-390 nm) in the free form and in the presence of sodium azide, D-mannitol, and serotonin was studied. It was shown that the decrease in the catalytic activity of both enzymes can be described by the kinetics of the first-order monomolecular reaction. The inactivation rate constant of lactate dehydrogenase M4 is considerably higher than that of lactate dehydrogenase H4, indicating a greater photochemical lability of the isoform M4. It was shown that sodium azide has a different protective action on the proteins studied. The irradiation of the muscular isoform in the presence of serotonin and D-mannitol did not change the character of the "dose-effect" curve and only led to a decrease in the photoinactivation rate constant of the protein.  相似文献   

15.
LDH-X is the isoenzyme of lactate dehydrogenase found in mammalian spermatozoa, occurring in cytosolic and mitochondrial locations. Gossypol strongly inhibits it, and the spermicidal action of this compound is attributed to the disruption of a reducing shuttle. The flagellated protozoan, Trypanosoma cruzi, contains an enzyme activity similar to LDH-X, called alpha-hydroxy-acid dehydrogenase, which is here shown to possess cytosolic and glycosomal components. The glycosome is a microbody-like organelle containing the early glycolytic enzymes. We postulate that the inhibition of replication of T. cruzi by gossypol derives from interference with glycosomal reducing shuttles. T. lewisi resembles T. cruzi in this respect.  相似文献   

16.
1. Mouse C4 lactate dehydrogenase treated in the dark with pyridoxal 5'-phosphate at pH8.7 and 25 degrees C loses activity gradually; 1mM-pyridoxal 5'-phosphate causes 83% inactivation, and higher concentrations of the reagent cause no further loss of activity. 2. The final extent of inactivation is very pH-dependent, greater inactivation occurring at the high pH values. 3. Inactivation may be fully reversed by addition of cysteine, or made permanent by reducing the enzyme with NaBH4. 4. The absorption spectrum of inactivated reduced enzyme indicates modification of lysine residues. Inactivation by 80% corresponds to modification of at least 1.8 mol of lysine/mol of enzyme subunit. 5. There is no loss of free thiol groups after inactivation with pyridoxal 5'-phosphate and reduction of the enzyme. 6. NAD+ or NADH gives complete protection against inactivation. protection studies with coenzyme fragments indicate that the AMP moiety is largely responsible for the protective effect. Lactate (10 mM) gives no protection in the absence of added nucleotides, but greatly enhances the protection given by ADP-ribose (1 mM). Thus ADP-ribose is able to trigger the binding of lactate. 7. Pyridoxal 5'-phosphate also acts as a non-covalent inhibitor of mouse C4 lactate dehydrogenase. The inhibition is non-competitive with respect to both NAD+ and lactate. 8. Km values for the enzyme at pH 8.0 and 25 degrees C, with the non-varied substrate saturating, are 0.3 mM-lactate and 5 microM-NAD+. 9. These results are discussed and compared with pyridoxal 5'-phosphate modification of other lactate dehydrogenase isoenzymes and related dehydrogenases.  相似文献   

17.
Gossypol, a polyphenolic binaphthalene dialdehyde isolated from cotton meal is a potent inhibitor of lactate dehydrogenase-X purified from bovine testis. For the conversion of pyruvate to lactate the IC50 for gossypol is 200 microM for the reverse reaction the IC50 is 12 microM. Gossypol is a competitive inhibitor of NADH, Ki = 30 microM (Km = 17 microM), and NAD+, Ki = 6 microM (Km = 130 microM), and noncompetitive for pyruvate, Ki = 220 microM (Km = 224 microM), and lactate, Ki = 52 microM (Km = 5.6 mM).  相似文献   

18.
Reaction of phenylglyoxal with glutamate dehydrogenase (EC 1.4.1.4), but not with glutamate synthase (EC 2.6.1.53), from Bacillus megaterium resulted in complete loss of enzyme activity. NADPH alone or together with 2-oxoglutarate provided substantial protection from inactivation by phenylglyoxal. Some 2mol of [14C]Phenylglyoxal was incorporated/mol of subunit of glutamate dehydrogenase. Addition of 1mM-NADPH decreased incorporation by 0.7mol. The Ki for phenylglyoxal was 6.7mM and Ks for competition with NADPH was 0.5mM. Complete inactivation of glutamate dehydrogenase by butane-2,3-dione was estimated by extrapolation to result from the loss of 3 of the 19 arginine residues/subunit. NADPH, but not NADH, provided almost complete protection against inactivation. Butane-2,3-dione had only a slight inactivating effect on glutamate synthase. The data suggest that an essential arginine residue may be involved in the binding of NADPH to glutamate dehydrogenase. The enzymes were inactivated by pyridoxal 5'-phosphate and this inactivation increased 3--4-fold in the borate buffer. NADPH completely prevented inactivation by pyridoxal 5'-phosphate.  相似文献   

19.
Interactive effects of gossypol and chloroquine as determined by activities of serum alanine transaminase (ALT), aspartate transaminase (AST) and liver lactate dehydrogenase (LDH), alkaline phosphatase (ALK-pase), glucose-6-phosphatase (G-6-pase) and cholesterol level were investigated in rats. Administration of gossypol for eight weeks, at a concentration of 20 mg per kg body wt. per day with or without chloroquine had no effect on the serum enzymes and glucose-6-phosphatase activities. When chloroquine at a concentration of 5 mg per kg body wt. thrice a week was administered alone, there was a marked decrease in total protein content and ALK-pose activities, while a significant increase in LDH activity was observed. Administration of either gossypol or chloroquine decreased the level of cholesterol. A greater decrease was recorded when both were given together. It is suggested that gossypol can be employed as a male contraceptive among malaria-infected populations.  相似文献   

20.
Rabbit muscle glyceraldehyde 3-phosphate dehydrogenase (GPD) and myokinase (MK) were rapidly inactivated by a reactive AMP analog, N6-(p-bromoacetaminobenzyl)-AMP, under mild conditions. Complete inactivation was observed when 4 and 0.3 mol of the reagent with respect to enzyme were reacted with GPD and MK, respectively. The inactivation of both enzymes were favored at higher pH and the enzymes were protected by addition of adenine nucleotide substrate. Modified GPD or MK had no affinity for AMP-Sepharose, in contrast to the native enzymes. From these results, the inactivation of GPD and MK by the reactive AMP analog can be regarded as an affinity labeling. The posibility that the present AMP analog may be used as a general affinity labeling reagent for various adenine nucleotide-related enzymes is discussed based on the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号