首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lipid regulation of cell membrane structure and function   总被引:11,自引:0,他引:11  
P L Yeagle 《FASEB journal》1989,3(7):1833-1842
Recent studies of structure-function relationships in biological membranes have revealed fundamental concepts concerning the regulation of cellular membrane function by membrane lipids. Considerable progress has been made in understanding the roles played by two membrane lipids: cholesterol and phosphatidyl-ethanolamine. Cholesterol has been shown to regulate ion pumps, which in some cases show an absolute dependence on cholesterol for activity. These studies suggest that an essential role that cholesterol plays in mammalian cell biology is to enable crucial membrane enzymes to provide function necessary for cell survival. Studies of phosphatidylethanolamine regulation of membrane protein activity and regulation of membrane morphology led to hypotheses concerning the roles for this particular lipid in biological membranes. New information on lipid-protein interactions and on the nature of the lipid head groups has permitted the development of mechanistic hypotheses for the regulation of membrane protein activity by phosphatidyl-ethanolamine. In addition, intermediates in the lamellar-nonlamellar phase transitions of membrane systems containing phosphatidylethanolamine, or other lipids with similar properties, have recently been implicated in facilitating membrane fusion. Finally, studies of transmembrane movement of lipids have provided new insight into the regulation of membrane lipid asymmetry and the biogenesis of cell membranes. These kinds of studies are harbingers of a new generation of progress in the field of cell membranes.  相似文献   

2.
Membranes: a meeting point for lipids, proteins and therapies   总被引:1,自引:0,他引:1  
Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.  相似文献   

3.
The diversity in structures and physical properties of lipids provides a wide variety of possible interactions with proteins that affect their assembly, organization, and function either at the surface of or within membranes. Because lipids have no catalytic activity, it has been challenging to define many of their precise functions in vivo in molecular terms. Those processes responsive to lipids are attuned to the native lipid environment for optimal function, but evidence that lipids with similar properties or even detergents can sometimes partially replace the natural lipid environment has led to uncertainty as to the requirement for specific lipids. The development of strains of microorganisms in which membrane lipid composition can be genetically manipulated in viable cells has provided a set of reagents to probe lipid functions. These mutants have uncovered previously unrecognized roles for lipids and provided in vivo verification for putative functions described in vitro. In this review, we summarize how these reagent strains have provided new insight into the function of lipids. The role of specific lipids in membrane protein folding and topological organization is reviewed. The evidence is summarized for the involvement of anionic lipid-enriched domains in the organization of amphitropic proteins on the membrane surface into molecular machines involved in DNA replication and cell division.  相似文献   

4.
Linde K  Gröbner G  Rilfors L 《FEBS letters》2004,575(1-3):77-80
The activity of phosphatidylserine synthase from Escherichia coli depends significantly on the nature and level of the lipids in the matrix, at which the enzyme is operating. To elucidate the role of anionic lipids in the regulation of PtdSer synthase, its activity was studied in mixed micelles containing phosphatidylglycerol (one charge) or diphosphatidylglycerol (two charges), the two main anionic membrane lipids in E. coli. Membrane association and activity of PtdSer synthase were increased by the two lipids, indicating their essential role in the positive regulation mechanism of the phosphatidylethanolamine level in the E. coli membrane.  相似文献   

5.
The large number of different membrane lipids with various structural modifications and properties and the characteristic lipid composition of different types of membranes suggest that different lipids have specific functions in the membrane. Many of the varying properties of lipids with different polar head groups and in different ionization states can be attributed to the presence of interactive or repulsive forces between the head groups in the bilayer. The interactive forces are hydrogen bonds between hydrogen bond donating groups such as --P--OH,--OH, and--NH3+ and hydrogen bond accepting groups such as --P--O- and --COO-. These interactions increase the lipid phase transition temperature and can account for the tendency of certain lipids to go into the hexagonal phase and the dependence of this tendency on the pH and ionization state of the lipid. The presence or absence of these interactions can also affect the penetration of hydrophobic substances into the bilayer, including hydrophobic residues of membrane proteins. Evidence for this suggestion has been gathered from studies of the myelin basic protein, a water-soluble protein with a number of hydrophobic residues. In this way the lipid composition can affect the conformation and activity of membrane proteins. Since hydrogen-bonding interactions depend on the ionization state of the lipid, they can be altered by changes in the environment which affect the pK of the ionizable groups. The formation of the hexagonal phase or inverted micelles, the conformation and activity of membrane proteins, and other functions mediated by lipids could thus be regulated in this way.  相似文献   

6.
Using the method of inductance-resonance energy transfer from tryptophanyl residues to fluorescent pyrene probe the structural state of plasmatic membranes from adipose tissue of different age rats has been studied. The structural heterogeneity of membrane lipid phase has been revealed. The differences in physical properties of annular and bilayer lipids don't depend on age. During aging the membrane lipid viscosity including lipids of near protein area decreases, the conformation of membrane protein components alters during aging as well. The data on various effectiveness of energy transfer from tryptophanyls to pyrene probe in young and aged animals with stable polypeptide composition of membrane proteins indicates that. The structure of membrane lipid phase is suggested to be the main factor affecting the conformational state and functional activity of membrane-bound proteins during aging.  相似文献   

7.
A combination of two cationic lipid derivatives having the same headgroup but tails of different chain lengths has been shown to have considerably different transfection activity than do the separate molecules. Such findings point to the importance of investigating the hydrophobic portions of cationic amphiphiles. Hence, we have synthesized a variety of cationic phosphatidylcholines with unusual hydrophobic moieties and have evaluated their transfection activity and that of their mixtures with the original molecule of this class, dioleoyl-O-ethylphosphatidylcholine (EDOPC). Four distinct relationships between transfection activity and composition of the mixture (plotted as percent of the new compound added to EDOPC) were found, namely: with a maximum or minimum; with a proportional change; or with essentially no change. Relevant physical properties of the lipoplexes were also examined; specifically, membrane fusion (by fluorescence resonance energy transfer between cationic and anionic lipids) and DNA unbinding (measured as accessibility of DNA to ethidium bromide by electrophoresis and by fluorescence resonance energy transfer between DNA and cationic lipid), both after the addition of negatively charged membrane lipids. Fusibility increased with increasing content of second cationic lipid, regardless of the transfection pattern. However, the extent of DNA unbinding after addition of negatively charged membrane lipids did correlate with extent of transfection. The phase behavior of cationic lipids per se as well as that of their mixtures with membrane lipids revealed structural differences that may account for and support the hypothesis that a membrane lipid-triggered, lamellar-->nonlamellar phase transition that facilitates DNA release is critical to efficient transfection by cationic lipids.  相似文献   

8.
Insulin receptor (IR) is a membrane tyrosine kinase that mediates the response of cells to insulin. IR activity has been shown to be modulated by changes in plasma membrane lipid composition, but the properties and structural determinants of lipids mediating IR activity are poorly understood. Here, using efficient methyl-alpha-cyclodextrin mediated lipid exchange, we studied the effect of altering plasma membrane outer leaflet phospholipid composition upon the activity of IR in mammalian cells. After substitution of endogenous lipids with lipids having an ability to form liquid ordered (Lo) domains (sphingomyelins) or liquid disordered (Ld) domains (unsaturated phosphatidylcholines (PCs)), we found that the propensity of lipids to form ordered domains is required for high IR activity. Additional substitution experiments using a series of saturated PCs showed that IR activity increased substantially with increasing acyl chain length, which increases both bilayer width and the propensity to form ordered domains. Incorporating purified IR into alkyl maltoside micelles with increasing hydrocarbon lengths also increased IR activity, but more modestly than by increasing lipid acyl chain length in cells. These results suggest that the ability to form Lo domains as well as wide bilayer width contributes to increased IR activity. Inhibition of phosphatases showed that some of the lipid dependence of IR activity upon lipid structure reflected protection from phosphatases by lipids that support Lo domain formation. These results are consistent with a model in which a combination of bilayer width and ordered domain formation modulates IR activity via IR conformation and accessibility to phosphatases.  相似文献   

9.
This review describes: (i) perturbations of the membrane lipids that are induced by integral membrane proteins, and reciprocally, (ii) the effects that the lipids may have on the function of membrane-associated proteins. Topics of the first category that are covered include: stoichiometry and selectivity of the first shell of lipids associated at the intramembranous perimeter of transmembrane proteins; the chain configuration and exchange rates of the first-shell lipids; the effects of transmembrane peptides on transbilayer movement of lipids (flip-flop); the effects of membrane proteins on lipid polymorphism and formation of non-lamellar phases; and the effects of hydrophobic mismatch on lipid chain configuration, phase stability and selectivity of lipid-protein association. Topics of the second category are: the influence of lipid selectivity on conformational changes in the protein; the effects of elastic fluctuations of the lipid bilayer on protein insertion and orientation in membranes; the effects of hydrophobic matching on intramembrane protein-protein association; and the effects of intrinsic lipid curvature on membrane integration, oligomer formation and activity of membrane proteins.  相似文献   

10.
Aminoacyl‐phosphatidylglycerol synthases (aaPGSs) are membrane proteins that utilize aminoacylated tRNAs to modify membrane lipids with amino acids. Aminoacylation of membrane lipids alters the biochemical properties of the cytoplasmic membrane and enables bacteria to adapt to changes in environmental conditions. aaPGSs utilize alanine, lysine and arginine as modifying amino acids, and the primary lipid recipients have heretofore been defined as phosphatidylglycerol (PG) and cardiolipin. Here we identify a new pathway for lipid aminoacylation, conserved in many Actinobacteria, which results in formation of Ala‐PG and a novel alanylated lipid, Alanyl‐diacylglycerol (Ala‐DAG). Ala‐DAG formation in Corynebacterium glutamicum is dependent on the activity of an aaPGS homolog, whereas formation of Ala‐PG requires the same enzyme acting in concert with a putative esterase encoded upstream. The presence of alanylated lipids is sufficient to enhance the bacterial fitness of C. glutamicum cultured in the presence of certain antimicrobial agents, and elucidation of this system expands the known repertoire of membrane lipids acting as substrates for amino acid modification in bacterial cells.  相似文献   

11.
A synaptic-membrane fraction rich in junctional components and Na-K ATPase and AChE activity was isolated from the cerebral cortex of the squirrel monkey. Incubation of membrane preparations with phospholipase C decreased the activity of Na-K ATPase by 50 per cent but had no effect on the activity of AChE. Analysis of the membrane fraction showed that phospholipase C cleaved both choline phosphoglyceride and the diacyl type of ethanolamine phosphoglyceride from membrane lipids. Addition of egg lecithin at low concentrations partially restored the activity of Na-K ATPase. Kinetic studies revealed that treatment with phospholipase C may produce a non-competitive type of inhibition as a result of the cleavage of a charged phosphorylated nitrogen base from membrane lipids.  相似文献   

12.
A method that exchanges the endogenous lipids in the environment of the membrane-bound (Mg2+ + Na+)-ATPase of Acholeplasma laidlawii B with defined exogenous lipids has been devised. Results demonstrate that 99.9% of the original membrane lipids were replaced with phosphatidylcholine and phosphatidic acid. ATPase enzyme activity was maintained throughout the substitution procedure.  相似文献   

13.
The larval fatty acid composition of neutral lipids and membrane lipids was determined in three ethanol-tolerant strains ofDrosophila melanogaster. Dietary ethanol promoted a decrease in long-chain fatty acids in neutral lipids along with enhanced alcohol dehydrogenase (EC 1.1.1.1) activity in all of the strains. Dietary ethanol also increased the incorporation of14C-ethanol into fatty acid ethyl esters (FAEE) by two- to threefold and decreased the incorporation of14C-ethanol into free fatty acids (FFA). When cultured on sterile, defined media with stearic acid at 0 to 5 mM, stearic acid decreased ADH activity up to 33%. In strains not selected for superior tolerance to ethanol, dietary ethanol promoted a loss of long-chain fatty acids in membrane lipids. The loss of long-chain fatty acids in membranes was strongly correlated with increased fluidity in hydrophobic domains of mitochondrial membranes as determined by electron spin resonance and correlated with a loss of ethanol tolerance. In the ethanol-tolerant E2 strain, which had been exposed to ethanol for many generations, dietary ethanol failed to promote a loss of long-chain fatty acids in membrane lipids. We are grateful for the support of National Institutes of Health Grant AA06702 (B.W.G.) and National Science Foundation Grant CHE-891987 (R.G.K.).  相似文献   

14.
The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.  相似文献   

15.
A plasma-membrane fraction rich in ion-stimulated ATPase activity was isolated from cauliflower (Brassica oleracea L.) buds. The activity of the ATPase was dependent on Mg(2+) and stimulated 4-fold by K(+). The lipids of the membrane fraction contained 57% by weight of phospholipid, 16% glycolipid including sterol glycosides, and 27% neutral lipids. Sterols and sterol esters comprised 9% by weight of the total lipid fraction, and the m ratio of total sterol to phospholipid was 0.5. Fatty acid unsaturation of the membrane lipids was 75%. Arrhenius plots of the Mg(2+) and Mg(2+) + K(+) stimulated ATPase activity were biphasic with an increase in activation energy occurring below about 12 degrees C, a response typical of some membrane-associated enzymes of chilling-sensitive plants. No thermal transitions were detected in the membranes or membrane lipids between 0 and 30 degrees C using differential scanning calorimetry and electron spin resonance spectroscopy. This type of thermal behavior is typical of membranes of chilling-resistant plants. It was concluded that the low temperature increase in activation energy of the ion-stimulated, membrane-associated ATPase is an intrinsic property of the enzyme system and not the result of a transition in the bulk membrane lipid.  相似文献   

16.
Killian JA 《FEBS letters》2003,555(1):134-138
There are many ways in which lipids can modulate the activity of membrane proteins. Simply a change in hydrophobic thickness of the lipid bilayer, for example, already can have various consequences for membrane protein organization and hence for activity. By using synthetic transmembrane peptides, it could be established that these consequences include peptide oligomerization, tilt of transmembrane segments, and reorientation of side chains, depending on the specific properties of the peptides and lipids used. The results illustrate the potential of the use of synthetic model peptides to establish general principles that govern interactions between membrane proteins and surrounding lipids.  相似文献   

17.
Rod and cone photoreceptor cyclic nucleotide-gated (CNG) channels play pivotal roles in phototransduction. This work investigates the functional significance of photoreceptor CNG channel association with membrane microdomains enriched in raft lipids, cholesterol and sphingolipids. The primary subunits of cone and rod CNG channels, CNGA3 and CNGA1, respectively, were heterologously expressed in HEK 293 cells, and channel activity was determined by ratiometric measurement of [Ca (2+)] i in response to cyclic guanosine monophosphate (cGMP) stimulation. CNGA3 was found to be largely insoluble following Triton X-100 extraction and cofractionationed with biochemically isolated membrane domains enriched in caveolin-1. Cofractionation of both natively expressed CNGA3 and CNGB1 (the modulatory subunit of the rod CNG channel) with the low buoyant density, caveolin-1-enriched membranes was also confirmed in mouse retinas. The functional significance of this association was established by the observed negative effects of depletion of raft lipids on the channel activity. Treatment with the cholesterol depleting agent, methyl-beta-cyclodextrin (MCD), significantly inhibited CNGA3 and CNGA1 activation in response to cGMP stimulation. MCD treatment lowered cellular cholesterol levels by approximately 45% without altering fatty acid composition, suggesting that the inhibition of channel activity by MCD treatment is not due to perturbation of other membrane lipids. Treatment with the sphingolipid biosynthesis inhibitor myriocin resulted in impaired activation and cytosolic redistribution of CNGA3, suggesting that the integrity of the membrane domains is critical for the channel cellular processing and plasma membrane localization. This study demonstrates the association of photoreceptor CNG channels with membrane domains enriched in raft lipids and indicates, for the first time, that raft lipids modulate the plasma membrane localization and functional activity of photoreceptor CNG channels.  相似文献   

18.
Specific interactions between lipids and membrane proteins have been observed in recent high-resolution crystal structures of membrane proteins. A number of cytochrome oxidase structures were analyzed, along with many amino acid sequences of membrane-spanning regions aligned according to their location in the membrane. The results reveal conservation of lipid-binding sites and of the residues that form them. These studies imply that bound lipids have important roles that are crucial to the assembly, structure, or activity of the protein. Evidence for some of these roles in subunit interactions, membrane insertion, and protein-protein complex formation is reviewed.  相似文献   

19.
通过大鼠心肌缺血/再灌及高脂血症的模型证实,两者均有明显的生物膜损伤,主要表现为膜磷脂的降低、胆固醇及胆固醇/磷脂比增高、膜脂流动性及膜酶(Ca2+, Mg2+-ATPase)活性降低,这些异常变化与氧自由基引发的脂质过氧化增强或脂质交换有关.  相似文献   

20.
The structural and functional integrity of biological membranes is vital to life. The interplay of lipids and membrane proteins is crucial for numerous fundamental processes ranging from respiration, photosynthesis, signal transduction, solute transport to motility. Evidence is accumulating that specific lipids play important roles in membrane proteins, but how specific lipids interact with and enable membrane proteins to achieve their full functionality remains unclear. X-ray structures of membrane proteins have revealed tight and specific binding of lipids. For instance, cardiolipin, an anionic phospholipid, has been found to be associated to a number of eukaryotic and prokaryotic respiratory complexes. Moreover, polar and septal accumulation of cardiolipin in a number of prokaryotes may ensure proper spatial segregation and/or activity of proteins. In this review, we describe current knowledge of the functions associated with cardiolipin binding to respiratory complexes in prokaryotes as a frame to discuss how specific lipid binding may tune their reactivity towards quinone and participate to supercomplex formation of both aerobic and anaerobic respiratory chains. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号