首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friedl H  Kauermann G 《Biometrics》2000,56(3):761-767
A procedure is derived for computing standard errors of EM estimates in generalized linear models with random effects. Quadrature formulas are used to approximate the integrals in the EM algorithm, where two different approaches are pursued, i.e., Gauss-Hermite quadrature in the case of Gaussian random effects and nonparametric maximum likelihood estimation for an unspecified random effect distribution. An approximation of the expected Fisher information matrix is derived from an expansion of the EM estimating equations. This allows for inferential arguments based on EM estimates, as demonstrated by an example and simulations.  相似文献   

2.
Mixed models are now well‐established methods in ecology and evolution because they allow accounting for and quantifying within‐ and between‐individual variation. However, the required normal distribution of the random effects can often be violated by the presence of clusters among subjects, which leads to multi‐modal distributions. In such cases, using what is known as mixture regression models might offer a more appropriate approach. These models are widely used in psychology, sociology, and medicine to describe the diversity of trajectories occurring within a population over time (e.g. psychological development, growth). In ecology and evolution, however, these models are seldom used even though understanding changes in individual trajectories is an active area of research in life‐history studies. Our aim is to demonstrate the value of using mixture models to describe variation in individual life‐history tactics within a population, and hence to promote the use of these models by ecologists and evolutionary ecologists. We first ran a set of simulations to determine whether and when a mixture model allows teasing apart latent clustering, and to contrast the precision and accuracy of estimates obtained from mixture models versus mixed models under a wide range of ecological contexts. We then used empirical data from long‐term studies of large mammals to illustrate the potential of using mixture models for assessing within‐population variation in life‐history tactics. Mixture models performed well in most cases, except for variables following a Bernoulli distribution and when sample size was small. The four selection criteria we evaluated [Akaike information criterion (AIC), Bayesian information criterion (BIC), and two bootstrap methods] performed similarly well, selecting the right number of clusters in most ecological situations. We then showed that the normality of random effects implicitly assumed by evolutionary ecologists when using mixed models was often violated in life‐history data. Mixed models were quite robust to this violation in the sense that fixed effects were unbiased at the population level. However, fixed effects at the cluster level and random effects were better estimated using mixture models. Our empirical analyses demonstrated that using mixture models facilitates the identification of the diversity of growth and reproductive tactics occurring within a population. Therefore, using this modelling framework allows testing for the presence of clusters and, when clusters occur, provides reliable estimates of fixed and random effects for each cluster of the population. In the presence or expectation of clusters, using mixture models offers a suitable extension of mixed models, particularly when evolutionary ecologists aim at identifying how ecological and evolutionary processes change within a population. Mixture regression models therefore provide a valuable addition to the statistical toolbox of evolutionary ecologists. As these models are complex and have their own limitations, we provide recommendations to guide future users.  相似文献   

3.
Lei Xu  Jun Shao 《Biometrics》2009,65(4):1175-1183
Summary In studies with longitudinal or panel data, missing responses often depend on values of responses through a subject‐level unobserved random effect. Besides the likelihood approach based on parametric models, there exists a semiparametric method, the approximate conditional model (ACM) approach, which relies on the availability of a summary statistic and a linear or polynomial approximation to some random effects. However, two important issues must be addressed in applying ACM. The first is how to find a summary statistic and the second is how to estimate the parameters in the original model using estimates of parameters in ACM. Our study is to address these two issues. For the first issue, we derive summary statistics under various situations. For the second issue, we propose to use a grouping method, instead of linear or polynomial approximation to random effects. Because the grouping method is a moment‐based approach, the conditions we assumed in deriving summary statistics are weaker than the existing ones in the literature. When the derived summary statistic is continuous, we propose to use a classification tree method to obtain an approximate summary statistic for grouping. Some simulation results are presented to study the finite sample performance of the proposed method. An application is illustrated using data from the study of Modification of Diet in Renal Disease.  相似文献   

4.
Xiang L  Yau KK  Van Hui Y  Lee AH 《Biometrics》2008,64(2):508-518
Summary .   The k-component Poisson regression mixture with random effects is an effective model in describing the heterogeneity for clustered count data arising from several latent subpopulations. However, the residual maximum likelihood estimation (REML) of regression coefficients and variance component parameters tend to be unstable and may result in misleading inferences in the presence of outliers or extreme contamination. In the literature, the minimum Hellinger distance (MHD) estimation has been investigated to obtain robust estimation for finite Poisson mixtures. This article aims to develop a robust MHD estimation approach for k-component Poisson mixtures with normally distributed random effects. By applying the Gaussian quadrature technique to approximate the integrals involved in the marginal distribution, the marginal probability function of the k-component Poisson mixture with random effects can be approximated by the summation of a set of finite Poisson mixtures. Simulation study shows that the MHD estimates perform satisfactorily for data without outlying observation(s), and outperform the REML estimates when data are contaminated. Application to a data set of recurrent urinary tract infections (UTI) with random institution effects demonstrates the practical use of the robust MHD estimation method.  相似文献   

5.
This article focuses on parameter estimation of multilevel nonlinearmixed-effects models (MNLMEMs). These models are used to analyzedata presenting multiple hierarchical levels of grouping (clusterdata, clinical trials with several observation periods, ...).The variability of the individual parameters of the regressionfunction is thus decomposed as a between-subject variabilityand higher levels of variability (e.g. within-subject variability).We propose maximum likelihood estimates of parameters of thoseMNLMEMs with 2 levels of random effects, using an extensionof the stochastic approximation version of expectation–maximization(SAEM)–Monte Carlo Markov chain algorithm. The extendedSAEM algorithm is split into an explicit direct expectation–maximization(EM) algorithm and a stochastic EM part. Compared to the originalalgorithm, additional sufficient statistics have to be approximatedby relying on the conditional distribution of the second levelof random effects. This estimation method is evaluated on pharmacokineticcrossover simulated trials, mimicking theophylline concentrationdata. Results obtained on those data sets with either the SAEMalgorithm or the first-order conditional estimates (FOCE) algorithm(implemented in the nlme function of R software) are compared:biases and root mean square errors of almost all the SAEM estimatesare smaller than the FOCE ones. Finally, we apply the extendedSAEM algorithm to analyze the pharmacokinetic interaction oftenofovir on atazanavir, a novel protease inhibitor, from theAgence Nationale de Recherche sur le Sida 107-Puzzle 2 study.A significant decrease of the area under the curve of atazanaviris found in patients receiving both treatments.  相似文献   

6.
In this article, we propose a two-stage approach to modeling multilevel clustered non-Gaussian data with sufficiently large numbers of continuous measures per cluster. Such data are common in biological and medical studies utilizing monitoring or image-processing equipment. We consider a general class of hierarchical models that generalizes the model in the global two-stage (GTS) method for nonlinear mixed effects models by using any square-root-n-consistent and asymptotically normal estimators from stage 1 as pseudodata in the stage 2 model, and by extending the stage 2 model to accommodate random effects from multiple levels of clustering. The second-stage model is a standard linear mixed effects model with normal random effects, but the cluster-specific distributions, conditional on random effects, can be non-Gaussian. This methodology provides a flexible framework for modeling not only a location parameter but also other characteristics of conditional distributions that may be of specific interest. For estimation of the population parameters, we propose a conditional restricted maximum likelihood (CREML) approach and establish the asymptotic properties of the CREML estimators. The proposed general approach is illustrated using quartiles as cluster-specific parameters estimated in the first stage, and applied to the data example from a collagen fibril development study. We demonstrate using simulations that in samples with small numbers of independent clusters, the CREML estimators may perform better than conditional maximum likelihood estimators, which are a direct extension of the estimators from the GTS method.  相似文献   

7.
Klein JP  Pelz C  Zhang MJ 《Biometrics》1999,55(2):497-506
A normal distribution regression model with a frailty-like factor to account for statistical dependence between the observed survival times is introduced. This model, as opposed to standard hazard-based frailty models, has survival times that, conditional on the shared random effect, have an accelerated failure time representation. The dependence properties of this model are discussed and maximum likelihood estimation of the model's parameters is considered. A number of examples are considered to illustrate the approach. The estimated degree of dependence is comparable to other models, but the present approach has the advantage that the interpretation of the random effect is simpler than in the frailty model.  相似文献   

8.
Kneib T  Fahrmeir L 《Biometrics》2006,62(1):109-118
Motivated by a space-time study on forest health with damage state of trees as the response, we propose a general class of structured additive regression models for categorical responses, allowing for a flexible semiparametric predictor. Nonlinear effects of continuous covariates, time trends, and interactions between continuous covariates are modeled by penalized splines. Spatial effects can be estimated based on Markov random fields, Gaussian random fields, or two-dimensional penalized splines. We present our approach from a Bayesian perspective, with inference based on a categorical linear mixed model representation. The resulting empirical Bayes method is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to inverse smoothing parameters, are estimated using (approximate) restricted maximum likelihood. In simulation studies we investigate the performance of different choices for the spatial effect, compare the empirical Bayes approach to competing methodology, and study the bias of mixed model estimates. As an application we analyze data from the forest health survey.  相似文献   

9.
We consider three approaches for estimating the rates of nonsynonymous and synonymous changes at each site in a sequence alignment in order to identify sites under positive or negative selection: (1) a suite of fast likelihood-based "counting methods" that employ either a single most likely ancestral reconstruction, weighting across all possible ancestral reconstructions, or sampling from ancestral reconstructions; (2) a random effects likelihood (REL) approach, which models variation in nonsynonymous and synonymous rates across sites according to a predefined distribution, with the selection pressure at an individual site inferred using an empirical Bayes approach; and (3) a fixed effects likelihood (FEL) method that directly estimates nonsynonymous and synonymous substitution rates at each site. All three methods incorporate flexible models of nucleotide substitution bias and variation in both nonsynonymous and synonymous substitution rates across sites, facilitating the comparison between the methods. We demonstrate that the results obtained using these approaches show broad agreement in levels of Type I and Type II error and in estimates of substitution rates. Counting methods are well suited for large alignments, for which there is high power to detect positive and negative selection, but appear to underestimate the substitution rate. A REL approach, which is more computationally intensive than counting methods, has higher power than counting methods to detect selection in data sets of intermediate size but may suffer from higher rates of false positives for small data sets. A FEL approach appears to capture the pattern of rate variation better than counting methods or random effects models, does not suffer from as many false positives as random effects models for data sets comprising few sequences, and can be efficiently parallelized. Our results suggest that previously reported differences between results obtained by counting methods and random effects models arise due to a combination of the conservative nature of counting-based methods, the failure of current random effects models to allow for variation in synonymous substitution rates, and the naive application of random effects models to extremely sparse data sets. We demonstrate our methods on sequence data from the human immunodeficiency virus type 1 env and pol genes and simulated alignments.  相似文献   

10.
Li L  Brown MB  Lee KH  Gupta S 《Biometrics》2002,58(3):601-611
This article is motivated by an application where subjects were dosed three times with the same drug and the drug concentration profiles appeared to be the lowest after the third dose. One possible explanation is that the pharmacokinetic (PK) parameters vary over time. Therefore, we consider population PK models with time-varying PK parameters. These time-varying PK parameters are modeled by natural cubic spline functions in the ordinary differential equations. Mean parameters, variance components, and smoothing parameters are jointly estimated by maximizing the double penalized log likelihood. Mean functions and their derivatives are obtained by the numerical solution of ordinary differential equations. The interpretation of PK parameters in the model and its flexibility are discussed. The proposed methods are illustrated by application to the data that motivated this article. The model's performance is evaluated through simulation.  相似文献   

11.
Shieh G 《Biometrics》2000,56(4):1192-1196
A direct extension of the approach described in Self, Mauritsen, and Ohara (1992, Biometrics 48, 31-39) for power and sample size calculations in generalized linear models is presented. The major feature of the proposed approach is that the modification accommodates both a finite and an infinite number of covariate configurations. Furthermore, for the approximation of the noncentrality of the noncentral chi-square distribution for the likelihood ratio statistic, a simplification is provided that not only reduces substantial computation but also maintains the accuracy. Simulation studies are conducted to assess the accuracy for various model configurations and covariate distributions.  相似文献   

12.
Liu LC  Hedeker D 《Biometrics》2006,62(1):261-268
A mixed-effects item response theory model that allows for three-level multivariate ordinal outcomes and accommodates multiple random subject effects is proposed for analysis of multivariate ordinal outcomes in longitudinal studies. This model allows for the estimation of different item factor loadings (item discrimination parameters) for the multiple outcomes. The covariates in the model do not have to follow the proportional odds assumption and can be at any level. Assuming either a probit or logistic response function, maximum marginal likelihood estimation is proposed utilizing multidimensional Gauss-Hermite quadrature for integration of the random effects. An iterative Fisher scoring solution, which provides standard errors for all model parameters, is used. An analysis of a longitudinal substance use data set, where four items of substance use behavior (cigarette use, alcohol use, marijuana use, and getting drunk or high) are repeatedly measured over time, is used to illustrate application of the proposed model.  相似文献   

13.
The need to consider in capture-recapture models random effects besides fixed effects such as those of environmental covariates has been widely recognized over the last years. However, formal approaches require involved likelihood integrations, and conceptual and technical difficulties have slowed down the spread of capture-recapture mixed models among biologists. In this article, we evaluate simple procedures to test for the effect of an environmental covariate on parameters such as time-varying survival probabilities in presence of a random effect corresponding to unexplained environmental variation. We show that the usual likelihood ratio test between fixed models is strongly biased, and tends to detect too often a covariate effect. Permutation and analysis of deviance tests are shown to behave properly and are recommended. Permutation tests are implemented in the latest version of program E-SURGE. Our approach also applies to generalized linear mixed models.  相似文献   

14.
Several analysis of the geographic variation of mortality rates in space have been proposed in the literature. Poisson models allowing the incorporation of random effects to model extra‐variability are widely used. The typical modelling approach uses normal random effects to accommodate local spatial autocorrelation. When spatial autocorrelation is absent but overdispersion persists, a discrete mixture model is an alternative approach. However, a technique for identifying regions which have significant high or low risk in any given area has not been developed yet when using the discrete mixture model. Taking into account the importance that this information provides to the epidemiologists to formulate hypothesis related to the potential risk factors affecting the population, different procedures for obtaining confidence intervals for relative risks are derived in this paper. These methods are the standard information‐based method and other four, all based on bootstrap techniques, namely the asymptotic‐bootstrap, the percentile‐bootstrap, the BC‐bootstrap and the modified information‐based method. All of them are compared empirically by their application to mortality data due to cardiovascular diseases in women from Navarra, Spain, during the period 1988–1994. In the small area example considered here, we find that the information‐based method is sensible at estimating standard errors of the component means in the discrete mixture model but it is not appropriate for providing standard errors of the estimated relative risks and hence, for constructing confidence intervals for the relative risk associated to each region. Therefore, the bootstrap‐based methods are recommended for this matter. More specifically, the BC method seems to provide better coverage probabilities in the case studied, according to a small scale simulation study that has been carried out using a scenario as encountered in the analysis of the real data.  相似文献   

15.
Most of the compartmental models in current use to model pharmacokinetic systems are deterministic. Stochastic formulations of pharmacokinetic compartmental models introduce stochasticity through either a probabilistic transfer mechanism or the randomization of the transfer rate constants. In this paper we consider a linear stochastic differential equation (LSDE) which represents a stochastic version of a one‐compartment linear model when input function undergoes random fluctuations. The solution of the LSDE, its mean value and covariance structure are derived. An explicit likelihood function is obtained either when the process is observed continuously over a period of time or when sampled data are available, as it is generally feasible. We discuss some asymptotic properties of the maximum likelihood estimators for the model parameters. Furthermore we develop expressions for two random variables of interest in pharmacokinetics: the area under the time‐concentration curve, M0(T), and the plateau concentration, xss. Finally the estimation procedure is illustrated by an application to real data.  相似文献   

16.
Two-part regression models are frequently used to analyze longitudinal count data with excess zeros, where the same set of subjects is repeatedly observed over time. In this context, several sources of heterogeneity may arise at individual level that affect the observed process. Further, longitudinal studies often suffer from missing values: individuals dropout of the study before its completion, and thus present incomplete data records. In this paper, we propose a finite mixture of hurdle models to face the heterogeneity problem, which is handled by introducing random effects with a discrete distribution; a pattern-mixture approach is specified to deal with non-ignorable missing values. This approach helps us to consider overdispersed counts, while allowing for association between the two parts of the model, and for non-ignorable dropouts. The effectiveness of the proposal is tested through a simulation study. Finally, an application to real data on skin cancer is provided.  相似文献   

17.
Aitkin M 《Biometrics》1999,55(1):117-128
This paper describes an EM algorithm for nonparametric maximum likelihood (ML) estimation in generalized linear models with variance component structure. The algorithm provides an alternative analysis to approximate MQL and PQL analyses (McGilchrist and Aisbett, 1991, Biometrical Journal 33, 131-141; Breslow and Clayton, 1993; Journal of the American Statistical Association 88, 9-25; McGilchrist, 1994, Journal of the Royal Statistical Society, Series B 56, 61-69; Goldstein, 1995, Multilevel Statistical Models) and to GEE analyses (Liang and Zeger, 1986, Biometrika 73, 13-22). The algorithm, first given by Hinde and Wood (1987, in Longitudinal Data Analysis, 110-126), is a generalization of that for random effect models for overdispersion in generalized linear models, described in Aitkin (1996, Statistics and Computing 6, 251-262). The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing distribution, but with only slight variation it can be used for a completely unknown mixing distribution, giving a straightforward method for the fully nonparametric ML estimation of this distribution. This is of value because the ML estimates of the GLM parameters can be sensitive to the specification of a parametric form for the mixing distribution. The nonparametric analysis can be extended straightforwardly to general random parameter models, with full NPML estimation of the joint distribution of the random parameters. This can produce substantial computational saving compared with full numerical integration over a specified parametric distribution for the random parameters. A simple method is described for obtaining correct standard errors for parameter estimates when using the EM algorithm. Several examples are discussed involving simple variance component and longitudinal models, and small-area estimation.  相似文献   

18.
Disease mapping of a single disease has been widely studied in the public health setup. Simultaneous modeling of related diseases can also be a valuable tool both from the epidemiological and from the statistical point of view. In particular, when we have several measurements recorded at each spatial location, we need to consider multivariate models in order to handle the dependence among the multivariate components as well as the spatial dependence between locations. It is then customary to use multivariate spatial models assuming the same distribution through the entire population density. However, in many circumstances, it is a very strong assumption to have the same distribution for all the areas of population density. To overcome this issue, we propose a hierarchical multivariate mixture generalized linear model to simultaneously analyze spatial Normal and non‐Normal outcomes. As an application of our proposed approach, esophageal and lung cancer deaths in Minnesota are used to show the outperformance of assuming different distributions for different counties of Minnesota rather than assuming a single distribution for the population density. Performance of the proposed approach is also evaluated through a simulation study.  相似文献   

19.
Salway R  Wakefield J 《Biometrics》2008,64(2):620-626
Summary .   This article considers the modeling of single-dose pharmacokinetic data. Traditionally, so-called compartmental models have been used to analyze such data. Unfortunately, the mean function of such models are sums of exponentials for which inference and computation may not be straightforward. We present an alternative to these models based on generalized linear models, for which desirable statistical properties exist, with a logarithmic link and gamma distribution. The latter has a constant coefficient of variation, which is often appropriate for pharmacokinetic data. Inference is convenient from either a likelihood or a Bayesian perspective. We consider models for both single and multiple individuals, the latter via generalized linear mixed models. For single individuals, Bayesian computation may be carried out with recourse to simulation. We describe a rejection algorithm that, unlike Markov chain Monte Carlo, produces independent samples from the posterior and allows straightforward calculation of Bayes factors for model comparison. We also illustrate how prior distributions may be specified in terms of model-free pharmacokinetic parameters of interest. The methods are applied to data from 12 individuals following administration of the antiasthmatic agent theophylline.  相似文献   

20.
A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号