首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
APP is a transmembrane precursor of beta-amyloid. In dominantly inherited familial Alzheimer's disease (FAD), point mutations V6421, V642F and V642G have been discovered in APP695. Here we show that expression of these mutants (FAD-APPs) causes a clone of COS cells to undergo apoptosis associated with DNA fragmentation. Apoptosis by the three FAD-APPs was the highest among all possible V642 mutants; normal APP695 had no effect on apoptosis, suggesting that apoptosis by APP mutants in this system is phenotypically linked to the FAD trait. FAD-APP-induced apoptosis was sensitive to bcl-2 and most probably mediated by heteromeric G proteins. This study presents a model system allowing analysis of the mechanism for FAD-APP-induced cytotoxicity.  相似文献   

2.
3.
Hereditary cerebral hemorrhage with amyloidosis, Dutch type (HCHWA-D) (or familial cerebral amyloid angiopathy) and familial Alzheimer's disease (FAD) share several properties. Both are autosomal dominant forms of cerebral amyloidosis characterized by beta-amyloid (A beta) deposition. In HCHWA-D the A beta is predominantly found in blood vessels and in early parenchymal plaques, whereas in AD parenchymal A beta deposits in the form of senile plaques and neurofibrillary tangles are a more prominent finding. Point mutations in the amyloid precursor protein (APP) have recently been described, in both conditions. A G to C transversion at codon 618 (extracellular portion of APP695), producing a single amino acid substitution of glutamine instead of glutamine acid, occurs in HCHWA-D; whereas mutations at codon 642 in the intramembrane region of APP695 (phenylalanine, isoleucine, or glycine instead of valine) are associated with early onset FAD. This suggests that the site of particular mutations in the APP gene and the type of amino acid substitution in the APP holoprotein are more important in determining clinicopathological phenotype and age at which A beta is deposited. Thus FAD and HCHWA-D can be regarded as two sides of the same coin.  相似文献   

4.
In familial Alzheimer's disease (FAD), three missense mutations, V642I, V642F and V642G, that co-segregate with the disease phenotype have been discovered in the 695 amino acid form of the amyloid precursor protein APP. Expression of these mutants causes a COS cell NK1 clone to undergo pertussis toxin-sensitive apoptosis in an FAD trait-linked manner by activating the G protein Go, which consists of G alpha(o) and G betagamma subunits. We investigated which subunit was responsible for the induction of apoptosis by V642I APP in NK1 cells. In the same system, expression of mutationally activated G alpha(o) or G alpha(i) induced little apoptosis. Apoptosis by V642I APP was antagonized by the overexpression of the carboxy-terminal amino acids 495-689 of the beta-adrenergic receptor kinase-1, which blocks the specific functions of G betagamma. Co-transfection of G beta2gamma2 cDNAs, but not that of other G beta(x)gamma(z) (x = 1-3; z = 2, 3), induced DNA fragmentation in a manner sensitive to bcl-2. These data implicate G betagamma as a cell death mediator for the FAD-associated mutant of APP.  相似文献   

5.
The proteolytic processing of the precursor of the beta-amyloid peptides (APP) is believed to be a key event in the pathogenesis of Alzheimer's disease. This processing is activated through a pathway involving the PDGF receptor, Src, and Rac1. In this paper, we demonstrate that this pathway specifically acts on APP and requires the YENPTY motif present in the APP cytosolic domain. Considering that several results indicate that the adaptor proteins interacting with this domain affect the processing of APP, we examined their possible involvement in the PDGF-induced pathway. By using an APP-Gal4 reporter system, we observed that the overexpression of Fe65 activates APP-Gal4 cleavage, whereas X11 stabilizes APP. Although mDab1 and Jip1 have no effect, Shc induces a strong activation of APP cleavage, and the contemporary exposure of cells to PDGF causes a dramatic cooperative effect. The analysis of point mutations of the APP YENPTY motif indicates that Fe65 and PDGF function through different mechanisms. In fact, Fe65 requires the integrity of APP695 Tyr682 residue, whereas PDGF effect is dependent upon the integrity of Asn684. Furthermore, the mutation of Asp664 of APP, which is the target site for the caspase-directed APP cleavage, strongly decreases the effect of Fe65. This suggests that Fe65 activates the cleavage of APP by caspases, and in fact, caspase inhibitor Z-VEVD decreases the APP cleavage induced by Fe65. On the contrary, the effects of Shc overexpression, like those of PDGF, are completely absent in the presence of compound X and require the integrity of the Asn684 residue of APP695. The involvement of Shc in the pathway regulating APP processing is confirmed by the effects of constitutively active and dominant negative mutants of Src and Rac1.  相似文献   

6.
Gene knockout studies in mice suggest that presenilin 1 (PS1) is the major gamma-secretase and that it contributes disproportionately to amyloid beta (Abeta) peptide generation from beta-amyloid precursor protein (APP), whereas PS2 plays a more minor role. Based on this and other observations we hypothesized that familial Alzheimer's disease (FAD) mutations in PS2 would have a dramatic effect on function in order to have an observable effect on Abeta levels in the presence of normal PS1 alleles. Only four of the eight reported FAD mutations in PS2 have altered function in vitro suggesting that the other variants represent rare polymorphisms rather than disease-causing mutations. In support of our hypothesis, the four verified PS2 FAD mutations cause substantial changes in the Abeta 42/40 ratio, comparable with PS1 mutations that cause very-early-onset FAD. Most of the PS2 mutations also cause a significant decrease in Abeta 40, APP C-terminal fragment (CTF)gamma and Notch intracellular domain (NICD) production suggesting that they are partial loss of function mutations. PS2 M239V, its PS1 homolog M233V, and other FAD mutations within transmembrane (TM) 5 of PS1 differentially affect CTFgamma and NICD production suggesting that TM5 of PS are important for gamma-secretase cleavage of APP but not Notch.  相似文献   

7.
Early onset familial Alzheimer's disease (FAD) is linked to autosomal dominant mutations in the amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2) genes. These are critical mediators of total amyloid beta-peptide (Abeta) production, inducing cell death through uncertain mechanisms. Tauroursodeoxycholic acid (TUDCA) modulates exogenous Abeta-induced apoptosis by interfering with E2F-1/p53/Bax. Here, we used mouse neuroblastoma cells that express either wild-type APP, APP with the Swedish mutation (APPswe), or double-mutated human APP and PS1 (APPswe/DeltaE9), all exhibiting increased Abeta production and aggregation. Cell viability was decreased in APPswe and APPswe/DeltaE9 but was partially reversed by z-VAD.fmk. Nuclear fragmentation and caspase 2, 6 and 8 activation were also readily detected. TUDCA reduced nuclear fragmentation as well as caspase 2 and 6, but not caspase 8 activities. p53 activity, and Bcl-2 and Bax changes, were also modulated by TUDCA. Overexpression of p53, but not mutant p53, in wild-type and mutant neuroblastoma cells was sufficient to induce apoptosis, which, in turn, was reduced by TUDCA. In addition, inhibition of the phosphatidylinositide 3'-OH kinase pathway reduced TUDCA protection against p53-induced apoptosis. In conclusion, FAD mutations are associated with the activation of classical apoptotic pathways. TUDCA reduces p53-induced apoptosis and modulates expression of Bcl-2 family.  相似文献   

8.
Most mutations in amyloid precursor proteins (APPs) linked to early onset familial Alzheimer's disease (FAD) increase the production of amyloid-beta peptides ending at residue 42 (Abeta42), which are released from APP by beta- and gamma-secretase cleavage. Stably transfected cells expressing wild-type human APP (APP(WT)) were more resistant to apoptosis-inducing treatments than cells expressing FAD-mutant human APP (APP(FAD)). Preventing Abeta42 production with an M596I mutation (beta-), which blocks beta-secretase cleavage of APP, or by treatment with a gamma-secretase inhibitor increased the resistance of APP(FAD)-expressing cells to apoptosis. Exposing hAPP(FAD/beta-) cells to exogenous Abeta42 or conditioned medium from Abeta42-producing APP(FAD) cells did not diminish their resistance to apoptosis. Preventing APP from entering the distal secretory pathway, where most Abeta peptides are generated, by retaining APP in the endoplasmic reticulum (ER)/intermediate compartment (IC) increased the resistance of APP(FAD)-expressing cells to apoptosis and did not alter the resistance of APP(WT)-expressing cells. p53-mediated gene transactivation after apoptosis-inducing treatments was much stronger in APP(FAD) cells than in hAPP(WT) or hAPP(FAD/beta-) cells. In contrast, upon induction of ER stress, cells expressing APP(FAD), hAPP(FAD/beta-), or APP(WT) had comparable levels of glucose-regulated protein-78 mRNA, an unfolded protein response indicator. We conclude that Abeta, especially intracellular Abeta, counteracts the antiapoptotic function of its precursor protein and predisposes cells to p53-mediated, and possibly other, proapoptotic pathways.  相似文献   

9.
The amyloid precursor protein (APP) gene codes for the precursor to the beta-protein found in the amyloid deposits of Alzheimer disease (AD). Recently Goate et al. identified in codon 717 of this gene a missense mutation which segregates with AD in a familial AD (FAD) kindred. The same mutation was also found in affected subjects from a second FAD family but not in other FAD families or in normal controls. The following work was undertaken to determine the frequency of the codon 717 mutation in FAD and nonfamilial AD cases and in normal controls. We tested 76 FAD families, 127 "sporadic" AD subjects, 16 Down syndrome cases, and 256 normal controls for this mutation, and none were positive. We also tested for the APP codon 693 mutation associated with hereditary cerebral hemorrhage with amyloidosis-Dutch type, for PRIP gene missense mutations at codons 102, 117, and 200, and for the PRIP insertion mutations which are associated with Creutzfeld-Jakob disease and Gerstmann-Straussler Scheinker syndrome. No examples of these mutations were found in our population. Thus these APP and PRIP mutations are rare in both FAD and nonfamilial AD.  相似文献   

10.
A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu-->Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu-->Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambiguously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond theta = .10 for the Volga German kindreds, theta = .20 for early-onset non-Volga Germans, and theta = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds.  相似文献   

11.
12.
Alzheimer's disease (AD) is characterized by the intracranial accumulation of the 4 kDa amyloid-beta peptide (Abeta), following proteolysis of a approximately 700-amino acid, integral membrane precursor, the Alzheimer amyloid precursor protein (APP). The best evidence causally linking APP to AD has been provided by the discovery of mutations within the APP coding sequence that segregate with disease phenotypes in autosomal dominant forms of familial AD (FAD). Though FAD is rare ( < 10% of all AD), the hallmark features (amyloid plaques, neurofibrillary tangles, synaptic and neuronal loss, neurotransmitter deficits and dementia) are indistinguishable when FAD is compared with typical, common, 'non-familial', or sporadic, AD (SAD). Studies of some clinically relevant mutant APP molecules from FAD families have yielded evidence that APP mutations can lead to the enhanced generation or aggregability of Abeta, consistent with a pathogenic role in AD. Other genetic loci for FAD have been discovered which are distinct from the immediate regulatory and coding regions of the APP gene, indicating that defects in molecules other than APP can also specify cerebral amyloidogenesis and FAD. To date, all APP and non-APP FAD mutations can be demonstrated to have the common feature of promoting amyloidogenesis of Abeta. Epidemiological studies indicate that postmenopausal women on estrogen replacement therapy (ERT) have their relative risk of developing SAD diminished by about one third as compared with age-matched women not receiving ERT [M.X. Tang, D. Jacobs, Y. Stern, K. Marder, P. Schofield, B. Gurland, H. Andrews, R. Mayeux, Effect of estrogen during menopause on risk and age at onset of Alzheimer's disease, Lancet 348 (2000) 429432]. Because of the key role of cerebral Abeta accumulation in initiating AD pathology, it is most attractive that estradiol might modulate SAD risk or age-at-onset by inhibiting Abeta accumulation. A possible mechanistic basis for such a scenario is reviewed here.  相似文献   

13.
Inherited Alzheimer's disease is a genetically heterogeneous disorder that involves gene defects on at least five chromosomal loci. Three of these loci have been found by genetic linkage studies to reside on chromosomes 21, 19, and 14. On chromosomes 21, the gene encoding the precursor protein of Alzheimerassociated amyloid (APP) has been shown to contain several mutations in exons 16 and 17 which account for roughly 2–3% of familial Alzheimer's disease (FAD). The other loci include what appears to be a susceptibility gene on chromosome 19 associated with late-onset (>65 years) FAD, and a major early-onset FAD gene defect on the long arm of chromosome 14. In other early-and late-onset FAD kindreds, the gene defects involved do not appear to be linked to any of these three loci, indicating the existence of additional and as of yet unlocalized FAD genes. This review provides a historical perspective of the search for FAD gene defects and summarizes the progress made in world-wide attempts to isolate and characterize the genes responsible for this disorder.  相似文献   

14.
Autosomal dominant forms of familial Alzheimer's disease (FAD) are caused by mutations of the amyloid precursor protein (APP) gene and by mutations of the genes encoding for presenilin 1 or presenilin 2. Simultaneously, evidence is provided that increased oxidative stress might play a crucial role in the rapid progression of the Swedish FAD. Here we investigated the effect of the Swedish double mutation (K670M/N671L) in the beta-amyloid precursor protein on oxidative stress-induced cell death mechanisms in PC12 cells. Western blot analysis and cleavage studies of caspase substrates revealed an elevated activity of the executor caspase 3 after treatment with hydrogen peroxide in cells containing the Swedish APP mutation. This elevated activity is the result of the enhanced activation of both intrinsic and extrinsic apoptosis pathways, including activation of caspase 2 and caspase 8. Furthermore, we observed an enhanced activation of JNK pathway and an attenuation of apoptosis by SP600125, a JNK inhibitor, through protection of mitochondrial dysfunction and reduction of caspase 9 activity. Our findings provide evidence that the massive neurodegeneration in early age of FAD patients could be a result of an increased vulnerability of neurons through activation of different apoptotic pathways as a consequence of elevated levels of oxidative stress.  相似文献   

15.
The principal component of the amyloid which accumulates in Alzheimer's Disease brain is a 4-kDa βA4 fragment of the amyloid precursor protein (APP). Although APP has the structural features of an integral transmembrane receptor, there has been limited evidence for expression of APP at the plasma membrane. The function of APP and related molecules is unknown. Using rabbit antisera to purified human brain APP, surface labeling of APP is demonstrable in HeLa cells transfected with the APP695 isoform. Indirect immunofluorescence indicates the presence of APP at the surface of unfixed or aldehyde-fixed cells; preembedding immunoelectron microscopy using 5- or 1-nm gold particles and silver enhancement confirms plasma membrane labeling as well as labeling within intracellular membrane vesicles. Immunolabeling of unfixed cells at 4°C followed by incubation at 37°C shows APP within endocytic vesicles. Transfected HeLa cells with prominent surface APP were larger with more extensive microvilli than nonimmunoreactive HeLa cells. This is consistent with the postulated role of APP as a mediator of cell surface adhesion and membranematrix stabilization.  相似文献   

16.
Amyloid precursor protein (APP) generates the beta-amyloid peptide, postulated to participate in the neurotoxicity of Alzheimer's disease. We report that APP and APLP bind to heme oxygenase (HO), an enzyme whose product, bilirubin, is antioxidant and neuroprotective. The binding of APP inhibits HO activity, and APP with mutations linked to the familial Alzheimer's disease (FAD) provides substantially greater inhibition of HO activity than wild-type APP. Cortical cultures from transgenic mice expressing Swedish mutant APP have greatly reduced bilirubin levels, establishing that mutant APP inhibits HO activity in vivo. Oxidative neurotoxicity is markedly greater in cerebral cortical cultures from APP Swedish mutant transgenic mice than wild-type cultures. These findings indicate that augmented neurotoxicity caused by APP-HO interactions may contribute to neuronal cell death in Alzheimer's disease.  相似文献   

17.
Amyloid precursor protein (APP) is the precursor molecule of beta-amyloid peptides, the major components of amyloid plaque in patients with Alzheimer's disease. In this study, we isolated JIP-1b, a JNK signaling scaffold protein, as a binding protein of APP, and analyzed the roles of JIP-1b in APP phosphorylation by JNK and the association of kinesin light chain 1 with APP. APP phosphorylation at threonine 668 by JNK was enhanced on the JIP-1b scaffold in vitro and in cultured cells exogenously expressing APP. APP phosphorylation in nerve growth factor-differentiated PC12 cells was mediated by activation of JNK signaling. JIP-1b also enhanced the association of kinesin light chain 1 with APP. Our results suggest that JIP-1b may function as a protein linking the kinesin-I motor protein to the cargo receptor, APP, and that the JNK signaling pathway may regulate the phosphorylation of this cargo protein through the JIP-1b scaffold.  相似文献   

18.
We tested the hypothesis that amyloid precursor protein (APP) and its relatives function as vesicular receptor proteins for kinesin-I. Deletion of the Drosophila APP-like gene (Appl) or overexpression of human APP695 or APPL constructs caused axonal transport phenotypes similar to kinesin and dynein mutants. Genetic reduction of kinesin-I expression enhanced while genetic reduction of dynein expression suppressed these phenotypes. Deletion of the C terminus of APP695 or APPL, including the kinesin binding region, disrupted axonal transport of APP695 and APPL and abolished the organelle accumulation phenotype. Neuronal apoptosis was induced only by overexpression of constructs containing both the C-terminal and Abeta regions of APP695. We discuss the possibility that axonal transport disruption may play a role in the neurodegenerative pathology of Alzheimer's disease.  相似文献   

19.
Presenilins (PS1/PS2) play a critical role in proteolysis of beta-amyloid precursor protein (beta APP) to generate beta-amyloid, a peptide important in the pathogenesis of Alzheimer's disease. Nevertheless, several regulatory functions of PS1 have also been reported. Here we demonstrate, in neuroblastoma cells, that PS1 regulates the biogenesis of beta APP-containing vesicles from the trans-Golgi network and the endoplasmic reticulum. PS1 deficiency or the expression of loss-of-function variants leads to robust vesicle formation, concomitant with increased maturation and/or cell surface accumulation of beta APP. In contrast, release of vesicles containing beta APP is impaired in familial Alzheimer's disease (FAD)-linked PS1 mutant cells, resulting in reduced beta APP delivery to the cell surface. Moreover, diminution of surface beta APP is profound at axonal terminals in neurons expressing a PS1 FAD variant. These results suggest that PS1 regulation of beta APP trafficking may represent an alternative mechanism by which FAD-linked PS1 variants modulate beta APP processing.  相似文献   

20.
Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695. APP(+1) is shown to interact with APP695, suggesting that these structures consist of functional protein complexes. Such an interaction can also be anticipated in post-mortem brains of young Down's syndrome patients without any sign of neuropathology. Here we observed APP(+1) immunoreactivity in beaded fibres. Additional support for functional consequences on the processing of APP695 comes from a 1.4-fold increase in levels of secreted amyloid beta40 in cells co-expressing APP695 and APP(+1), although APP(+1) itself does not contain the amyloid beta sequence. Taken together, these data show that co-expression of APP695 and APP(+1) affects the processing of APP695 in a pro-amyloidogenic way and this could gradually contribute to Alzheimer's disease pathology, as has been implicated in Down's syndrome patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号