首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extremely long proboscides are rare among butterflies outside of the Hesperiidae, yet representatives of several genera of skipper butterflies possess proboscides longer than 50 mm. Although extremely elongated mouthparts can be regarded as advantageous adaptations to gain access to nectar in deep‐tubed flowers, the scarcity of long‐proboscid butterflies is a phenomenon that has not been adequately accounted for. So far, the scarceness was explained by functional costs arising from increased flower handling times caused by decelerated nectar intake rates. However, insects can compensate for the negative influence of a long proboscis through changes in the morphological configuration of the feeding apparatus. Here, we measured nectar intake rates in 34 species representing 21 Hesperiidae genera from a Costa Rican lowland rainforest area to explore the impact of proboscis length, cross‐sectional area of the food canal and body size on intake rate. Long‐proboscid skippers did not suffer from reduced intake rates due to their large body size and enlarged food canals. In addition, video analyses of the flower‐visiting behaviour revealed that suction times increased with proboscis length, suggesting that long‐proboscid skippers drink a larger amount of nectar from deep‐tubed flowers. Despite these advantages, we showed that functional costs of exaggerated mouthparts exist in terms of longer manipulation times per flower. Finally, we discuss the significance of scaling relationships on the foraging efficiency of butterflies and why some skipper taxa, in particular, have evolved extremely long proboscides.  相似文献   

2.
On the mechanics and energetics of nectar feeding in butterflies.   总被引:1,自引:0,他引:1  
A mechanistic model describing the mechanics and energetics of nectar-feeding in butterflies is developed. The butterflies Collas eurytheme and Danaus plexippus are used to illustrate the model. Simulation results indicate that there are mechanical limitations upon the range of nectar sugar concentrations and nectar extraction times available to butterflies. There is a unique optimum for net rate of energy gain at 20–25% nectar sugar concentration which is independent of the metabolic rate and of proboscis shape and size over the ranges found in butterflies. The optimal nectar extraction rate depends upon the size and shape of the proboscis. These results are discussed in relation to the design of nectar feeding structures, optimal foraging strategy, and the evolution of insect pollination.  相似文献   

3.
Shear stress, a mechanical force created by blood flow, is known to affect the developing cardiovascular system. Shear stress is a function of both shear rate and viscosity. While established techniques for measuring shear rate in embryos have been developed, the viscosity of embryonic blood has never been known but always assumed to be like adult blood. Blood is a non-Newtonian fluid, where the relationship between shear rate and shear stress is nonlinear. In this work, we analyzed the non-Newtonian behavior of embryonic chicken blood using a microviscometer and present the apparent viscosity at different hematocrits, different shear rates, and at different stages during development from 4 days (Hamburger-Hamilton stage 22) to 8 days (about Hamburger-Hamilton stage 34) of incubation. We chose the chicken embryo since it has become a common animal model for studying hemodynamics in the developing cardiovascular system. We found that the hematocrit increases with the stage of development. The viscosity of embryonic avian blood in all developmental stages studied was shear rate dependent and behaved in a non-Newtonian manner similar to that of adult blood. The range of shear rates and hematocrits at which non-Newtonian behavior was observed is, however, outside the physiological range for the larger vessels of the embryo. Under low shear stress conditions, the spherical nucleated blood cells that make up embryonic blood formed into small aggregates of cells. We found that the apparent blood viscosity decreases at a given hematocrit during embryonic development, not due to changes in protein composition of the plasma but possibly due to the changes in cellular composition of embryonic blood. This decrease in apparent viscosity was only visible at high hematocrit. At physiological values of hematocrit, embryonic blood viscosity did not change significantly with the stage of development.  相似文献   

4.
The morphology and functional anatomy of the mouthparts of pollen wasps (Masarinae, Hymenoptera) are examined by dissection, light microscopy and scanning electron microscopy, supplemented by field observations of flower visiting behavior. This paper focuses on the evolution of the long suctorial proboscis in pollen wasps, which is formed by the glossa, in context with nectar feeding from narrow and deep corolla of flowers. Morphological innovations are described for flower visiting insects, in particular for Masarinae, that are crucial for the production of a long proboscis such as the formation of a closed, air-tight food tube, specializations in the apical intake region, modification of the basal articulation of the glossa, and novel means of retraction, extension and storage of the elongated parts. A cladistic analysis provides a framework to reconstruct the general pathways of proboscis evolution in pollen wasps. The elongation of the proboscis in context with nectar and pollen feeding is discussed for aculeate Hymenoptera.  相似文献   

5.
1. There is an exponential relationship between blood viscosity (cP) and hematocrit (%) for the bullfrog; eta = 1.81 e0.033Hct. The in vitro optimal hematocrit calculated for blood flow through tubes, from this relationship for bullfrog blood, is 30%. 2. Amphibian blood is a non-Newtonian fluid with viscosity dependent on shear rate. It has a finite yield shear stress of about 1.5 dynes cm-2. 3. Hematocrit of bullfrogs was increased from 27% (control) to 57% by isovolemic erythrocythemia (constant volume blood-doping). There was a slight increase in systolic, diastolic and venous blood pressure with elevated hematocrit. 4. Systemic arch blood flow rate was inversely related to blood viscosity for erythrocythemic bullfrogs. The decrease in systemic arch blood flow at high hematocrits was due primarily to reduced pulse volume rather than reduced heart rate. 5. Systemic arch blood flow, when standardised between individuals, was inversely related to blood viscosity; Qbl = 0.185 + 3.73 eta -1. This relationship was significantly different from that predicted by the Poiseuille-Hagen flow formula. The in vivo optimal hematocrit calculated from this relationship was 41%. 6. Optimal hematocrit theory appears to be generally applicable for Rana catesbeiana in vitro and in vivo. Most individuals had an in vivo optimal hematocrit, but the absence of a clear optimal hematocrit for some individuals could reflect methodological variability, or in vivo physiological compensation for the increased blood viscosity at high hematocrit.  相似文献   

6.
During feeding on warm-blooded hosts, haematophagous insects are exposed to thermal stress due to the ingestion of a meal which temperature may highly exceed their own body temperature. In order to avoid overheating and its subsequent deleterious effects, these insects respond by setting up molecular protective mechanisms such as heat shock proteins synthesis or by using thermoregulative strategies. Moreover, the duration of contact with the host depends on the way of feeding displayed by the different species (either telmophagous or solenophagous) and thus also impacts their exposure to heat. Solenophagous insects feed directly on blood vessels and are relatively slow feeders while telmophagous insects by lacerating capillaries, facilitate their access to blood and thus feed more quickly. The aim of this work was to investigate to what extent strictly telmophagous insects such as tsetse flies are exposed to thermal stress during feeding and consequently to evaluate the impact of the feeding strategy on the exposition to overheating in haematophagous insects in general. Real time thermographic analysis during feeding revealed that the flies’ body significantly heat up quite homogeneously. At the end of feeding, however, a marked regional heterothermy occurs as a consequence of the alary muscles warm up that precedes take-off. Feeding strategies, either solenophagy or telmophagy, thus appear to have a great impact on both exposition to predation risks and to thermal stress.  相似文献   

7.
P. H. BECKER  D. FRANK  M. WAGENER 《Ibis》1997,139(2):264-269
We compared the foraging strategies of Common Terns Sterna hirundo in freshwater (Lake Jeziorsko, Brzeg, Poland) and marine environments (Minsener Oldeoog, German Wadden Sea). Body mass changes, nest relief and duration and number of feeding trips per day were studied by automatically weighing the adults, using electronic balances under the nests. At the freshwater site, adults were lighter both before and after feeding and gained less mass during a trip. in the Wadden Sea, single feeding trips lasted longer than at the freshwater site and the terns made fewer trips per day. To achieve the same mass gain per day as in birds in freshwater, trips at sea had to be longer and food intake per trip was higher. The daily duration of absence for feeding and the daily mass gain were about the same in both areas. The limnetic feeders finished foraging earlier in the evening than the terns foraging at sea. These differences are consistent with the hypothesis that limnetic prey availability was consistent, whereas the tides limited the availability of marine prey. In consequence, foraging over freshwater presents several advantages, such as higher colony attendance, better mate coordination and better parental care.  相似文献   

8.
For specialised feeders, accessing food resources may impact on the performance of appetitive foraging and social behaviours at individual and population levels. Flamingos are excellent examples of social species with complex, species-specific feeding strategies. As attainment of coloured plumage depends upon intake of dietary carotenoids, and as study of free-ranging flamingos shows that foraging is disrupted by aggression from other birds, we investigated the effect of four feeding styles on foraging and aggression in captive lesser flamingos. We evaluated individual and group differences in foraging and aggression when birds consumed bespoke “flamingo pellet” from a bowl, an indoor feeding pool and an outdoor feeding section of their pool. Natural foraging (when birds were feeding irrespective of the presence of pellet) was recorded for comparison with artificial feeding styles. One-minute long video footage of the birds' activities in these different locations, recorded between 2013 and 2016, was used to evaluate behaviour. Total number of seconds engaged in feeding and in aggression was recorded by continuous sampling. The colour of individual birds was scored from 1 (mainly white) to 4 (mainly pink). For natural filter feeding in the outdoor pool, maximum foraging was twice as much as bowl feeding, whilst aggression was less than half as much as other feeding methods. Overall, a more restricted feeding style significantly predicted aggression, along with increasing group size. Plumage colour significantly influenced aggression (brightest flamingos were more aggressive) and showed a non-significant trend with foraging (brighter birds fed less than paler birds). No sex effect on feeding or aggression was found. This study enhances our understanding of husbandry and species' biology impacts on captive behaviour and provides data-based evidence to improve food presentation. For flamingos, implementation of spacious outdoor feeding areas can encourage natural foraging patterns by reducing excess aggression and enhances welfare by improving flock social stability.  相似文献   

9.
The functionality of butterfly mouthparts (proboscis) plays an important role in pollination systems, which is driven by the reward of nectar. Proboscis functionality has been assumed to require action of the sucking pump in the butterfly's head coupled with the straw-like structure. Proper proboscis functionality, however, also is dependent on capillarity and wettability dynamics that facilitate acquisition of liquid films from porous substrates. Due to the importance of wettability dynamics in proboscis functionality, we hypothesized that proboscides of eastern black swallowtail (Papilio polyxenes asterius Stoll) (Papilionidae) and cabbage butterflies (Pieris rapae Linnaeus) (Pieridae) that were experimentally split (i.e., proboscides no longer resembling a sealed straw-like tube) would retain the ability to feed. Proboscides were split either in the drinking region (distal 6–10% of proboscis length) or approximately 50% of the proboscis length 24 h before feeding trials when butterflies were fed a red food-coloring solution. Approximately 67% of the butterflies with proboscides split reassembled prior to the feeding trials and all of these butterflies displayed evidence of proboscis functionality. Butterflies with proboscides that did not reassemble also demonstrated fluid uptake capabilities, thus suggesting that wild butterflies might retain fluid uptake capabilities, even when the proboscis is partially injured.  相似文献   

10.
Temperature is one of the most important factors affecting the life of insects [1]. For instance, high temperatures can have deleterious effects on insects' physiology. Therefore, many of them have developed various strategies to avoid the risk of thermal stress [2]. They can seek a fresher environment or adjust their water loss, but hematophagous insects, such as mosquitoes, must confront the issue of thermal stress at each feeding event on a warm-blooded host [3]. To better understand to what extent mosquitoes are exposed to thermal stress while feeding, we conducted a real-time infrared thermographic analysis of mosquitoes' body temperature during feeding on both warm blood and sugar solution. First, our results highlighted differences in temperature between the body parts of the mosquito (i.e., heterothermy) during blood intake, but not during sugar meals. We also found that anopheline mosquitoes can decrease their body temperature during blood feeding thanks to evaporative cooling of fluid droplets, which are excreted and maintained at the end of the abdomen. This mechanism protects the insect itself, probably as well as the sheltered microorganisms, both symbionts and parasites, from thermal stress. These findings constitute the first evidence of thermoregulation among hematophagous insects and explain the paradox of fresh blood excretion during feeding.  相似文献   

11.
Fouks B  Lattorff HM 《PloS one》2011,6(10):e26328
Bumblebee colonies are founded by a single-mated queen. Due to this life history trait, bumblebees are more susceptible to parasites and diseases than polyandrous and/or polygynous social insects. A greater resistance towards parasites is shown when the genetic variability within a colony is increased. The parasite resistance may be divided into different levels regarding the step of the parasite infection (e.g. parasite uptake, parasite intake, parasite's establishment in the nest, parasite transmission). We investigate the prophylactic behaviour of bumblebees. Bumblebees were observed during their foraging flights on two artificial flowers; one of these was contaminated by Crithidia bombi, a naturally occurring gut parasite of bumblebees (in a control experiment the non-specific pathogen Escherichia coli was used). For C. bombi, bumblebees were preferentially observed feeding on the non-contaminated flower. Whereas for E. coli, the number of visits between flowers was the same, bumblebees spent more time feeding on the non-contaminated flower. These results demonstrate the ability of bumblebees to recognise the contamination of food sources. In addition, bumblebees have a stronger preference for the non-contaminated flower when C. bombi is present in the other flower than with E. coli which might be explained as an adaptive behaviour of bumblebees towards this specific gut parasite. It seems that the more specific the parasite is, the more it reduces the reward of the flower.  相似文献   

12.
The feeding apparatus of 17 species of ground beetles (Carabidae), representing 17 genera and 12 tribes has been studied, and the observations correlated with gut content analyses and the ability of certain species to regurgitate pre-oral digestive fluids. The diverse feeding habits of species investigated include zoophagous fluid feeders, zoophagous fragmentary feeders and mixed feeders. In the last-named group, the food intake may be both fluid and fragmentary, and either of animal or of both animal and plant origin.  相似文献   

13.
A non-Newtonian shear-thinning constitutive relation is proposed to study pulsatile flow of whole blood in a cylindrical tube. The constitutive relation, which satisfies the principle of material frame indifference, is derived from viscometric data obtained from whole blood over a range of hematocrits. Assuming axisymmetric flow in a rigid cylindrical tube of constant diameter, a second-order, nonlinear partial differential equation governing the axial velocity component is obtained. Imposing a periodic pressure gradient, the governing equation was solved numerically using finite difference methods over a range of Stokes values and hematocrits. For a forcing frequency of 1 Hz, results are presented over tube diameters ranging between 0.1 and 2 cm and over hematocrits ranging between 10 and 80%. For a given hematocrit, velocity profiles predicted for the non-Newtonian model under sinusoidal forcing reveal attenuated volume flow rate and enhanced vorticity transport over the tube cross-section relative to a Newtonian fluid having a viscosity corresponding to the high shear-rate limit. For moderate to high Stokes numbers, consistent with flow in large arteries, our results revealed a viscosity distribution that was nearly time invariant. An analytic solution was obtained for a fluid having arbitrarily prescribed radially varying, temporally invariant viscosity and density distributions under arbitrary periodic pressure forcing. Close agreement was observed between our numerical and analytical results when the imposed viscosity distribution was chosen to approximate the time-averaged viscosity distribution predicted by the shear-thinning non-Newtonian model. For St > or approximately= 100, the disparity between our results and those of a Newtonian fluid of constant viscosity grows with a decreasing ratio of the DC to AC components of the pressure-gradient amplitude below 50%. In particular, for any purely oscillatory pressure-gradient (vanishing DC component), the Womersley solution is a particularly poor predictor of the amplitude and phase of wall shear rate for over half of the flow cycle. Under such circumstances, the analytical models presented here provide a simple and accurate means of estimating instantaneous wall shear rate, knowing only the pressure gradient and hematocrit.  相似文献   

14.
Das B  Johnson PC  Popel AS 《Biorheology》2000,37(3):239-258
The study of the effect of leukocyte adhesion on blood flow in small vessels is of primary interest to understand the resistance changes in venular microcirculation. Available computational fluid dynamic studies provide information on the effect of leukocyte adhesion when blood is considered as a homogeneous Newtonian fluid. In the present work we aim to understand the effect of leukocyte adhesion on the non-Newtonian Casson fluid flow of blood in small venules; the Casson model represents the effect of red blood cell aggregation. In our model the blood vessel is considered as a circular cylinder and the leukocyte is considered as a truncated spherical protrusion in the inner side of the blood vessel. The cases of single leukocyte adhesion and leukocyte pairs in positions aligned along the same side, and opposite sides of the vessel wall are considered. The Casson fluid parameters are chosen for cat blood and human blood and comparisons are made for the effects of leukocyte adhesion in both species. Numerical simulations demonstrated that for a Casson fluid with hematocrit of 0.4 and flow rate Q = 0.072 nl/s, a single leukocyte increases flow resistance by 5% in a 32 microns diameter and 100 microns long vessel. For a smaller vessel of 18 microns, the flow resistance increases by 15%.  相似文献   

15.
Summary Field observations of the adult European skipper, Thymelicus lineola (Ochs), feeding on concentrated nectars (40–65% sucrose) from a variety of flower species led us to question recent literature stating that butterflies feed primarily, and most effectively, on dilute nectars. Rate of sucrose solution intake, volume consumed and feeding duration were measured for males and females at 25 and 35°C under laboratory conditions. As sucrose concentration increased, the volume of solution ingested per meal first increased and then decreased gradually, while sucrose intake was highest at concentrations 40%. Females fed more than males at all concentrations >10% while temperature had no significant effect on meal size. Feeding duration increased with concentration, was shorter at 35 than at 25°C, and was longer for females than males.The rate of volume intake decreased as concentration incresed, but not nearly as rapidly as predicted by earlier models. Rates did not differ between the sexes but were faster at 35 than 25°C. This increase was contributed to equally by a reduction in viscosity and an increase in power output of the cibarial pump. The form of the relations was similar, with maximum rate of sucrose intake occurring at 40% sucrose.A new mathematical model was developed to describe the rate — concentration relation based on the Hagen-Poiseuille equation for laminar fluid flow through pipes. Our model differs from previous models principally in that the power output of the insect's cibarial pump remains relatively constant while the pressure drop created by the pump to induce suction is highly variable. This change results in a very different feeding rate — sucrose concentration function with the optimal rate of sucrose intake at a concentration of approximately 40%. The model indicates that the same relation should hold for a wide range of proboscis shape and size and type of suction pump, and should therefore be applicable to all other nectar feeders with sucking mouth parts. Independent verifications of the model were carried out by measuring the rate of uptake of sucrose solutions of the adult common armyworm, Pseudaletia unipuncta (Haw.), and of human subjects using a volumetric pipette, both of which gave an excellent fit.Nectar concentrations which correspond to optimal rates of sucrose intake should be highly preferred by insects with high feeding costs, those which are time-limited, or which are very vulnerable while feeding. High transport costs and severe water stress may shift preferences to higher and lower concentrations respectively.  相似文献   

16.
A multiphase transient non-Newtonian three-dimensional (3-D) computational fluid dynamics (CFD) simulation has been performed for pulsatile hemodynamics in an idealized curved section of a human coronary artery. We present the first prediction, to the authors' knowledge, of particulate buildup on the inside curvature using the multiphase theory of dense suspension hemodynamics. In this study, the particulates are red blood cells (RBCs). The location of RBC buildup on the inside curvature correlates with lower wall shear stress (WSS) relative to the outside curvature. These predictions provide insight into how blood-borne particulates interact with artery walls and hence, have relevance for understanding atherogenesis since clinical observations show that atherosclerotic plaques generally form on the inside curvatures of arteries. The buildup of RBCs on the inside curvature is driven by the secondary flow and higher residence times. The higher viscosity in the central portion of the curved vessel tends to block their flow, causing them to migrate preferentially through the boundary layer. The reason for this is the nearly neutrally buoyant nature of the dense two-phase hemodynamic flow. The two-phase non-Newtonian viscosity model predicts greater shear thinning than the single-phase non-Newtonian model. Consequently, the secondary flow induced in the curvature is weaker. The waveforms for computed hemodynamic parameters, such as hematocrit, WSS, and viscosity, follow the prescribed inlet velocity waveforms. The lower oscillatory WSS produced on the inside curvature has implications for understanding thickening of the intimal layer.  相似文献   

17.
A numerical and experimental investigation of unsteady entry flow in a 90 degrees curved tube is presented to study the impact of the non-Newtonian properties of blood on the velocity distribution. The time-dependent flow rate for the Newtonian and the non-Newtonian blood analog fluid were identical. For the numerical computation, a Carreau-Yasuda model was employed to accommodate the shear thinning behavior of the Xanthan gum solution. The viscoelastic properties were not taken into account. The experimental results indicate that significant differences between the Newtonian and non-Newtonian fluid are present. The numerical results for both the Newtonian and the non-Newtonian fluid agree well with the experimental results. Since viscoelasticity was not included in the numerical code, shear thinning behavior of the blood analog fluid seems to be the dominant non-Newtonian property, even under unsteady flow conditions. Finally, a comparison between the non-Newtonian fluid model and a Newtonian fluid at a rescaled Reynolds number is presented. The rescaled Reynolds number, based on a characteristic rather than the high-shear rate viscosity of the Xanthan gum solution, was about three times as low as the original Reynolds number. Comparison reveals that the character of flow of the non-Newtonian fluid is simulated quite well by using the appropriate Reynolds number.  相似文献   

18.
Adhesion of circulating tumor cells (CTCs) to the microvessel wall largely depends on the blood hydrodynamic conditions, one of which is the blood viscosity. Since blood is a non-Newtonian fluid, whose viscosity increases with hematocrit, in the microvessels at low shear rate. In this study, the effects of hematocrit, vessel size, flow rate and red blood cell (RBC) aggregation on adhesion of a CTC in the microvessels were numerically investigated using dissipative particle dynamics. The membrane of cells was represented by a spring-based network connected by elastic springs to characterize its deformation. RBC aggregation was modeled by a Morse potential function based on depletion-mediated assumption, and the adhesion of the CTC to the vessel wall was achieved by the interactions between receptors and ligands at the CTC and those at the endothelial cells forming the vessel wall. The results demonstrated that in the microvessel of \(15\,\upmu \hbox {m}\) diameter, the CTC has an increasing probability of adhesion with the hematocrit due to a growing wall-directed force, resulting in a larger number of receptor–ligand bonds formed on the cell surface. However, with the increase in microvessel size, an enhanced lift force at higher hematocrit detaches the initial adherent CTC quickly. If the microvessel is comparable to the CTC in diameter, CTC adhesion is independent of Hct. In addition, the velocity of CTC is larger than the average blood flow velocity in smaller microvessels and the relative velocity of CTC decreases with the increase in microvessel size. An increased blood flow resistance in the presence of CTC was also found. Moreover, it was found that the large deformation induced by high flow rate and the presence of aggregation promote the adhesion of CTC.  相似文献   

19.
Choi HW  Barakat AI 《Biorheology》2005,42(6):493-509
Endothelial cell (EC) responsiveness to shear stress is essential for vasoregulation and plays a role in atherogenesis. Although blood is a non-Newtonian fluid, EC flow studies in vitro are typically performed using Newtonian fluids. The goal of the present study was to determine the impact of non-Newtonian behavior on the flow field within a model flow chamber capable of producing flow disturbance and whose dimensions permit Reynolds and Womersley numbers comparable to those present in vivo. We performed two-dimensional computational fluid dynamic simulations of steady and pulsatile laminar flow of Newtonian and non-Newtonian fluids over a backward facing step. In the non-Newtonian simulations, the fluid was modeled as a shear-thinning Carreau fluid. Steady flow results demonstrate that for Re in the range 50-400, the flow recirculation zone downstream of the step is 22-63% larger for the Newtonian fluid than for the non-Newtonian fluid, while spatial gradients of shear stress are larger for the non-Newtonian fluid. In pulsatile flow, the temporal gradients of shear stress within the flow recirculation zone are significantly larger for the Newtonian fluid than for the non-Newtonian fluid. These findings raise the possibility that in regions of flow disturbance, EC mechanotransduction pathways stimulated by Newtonian and non-Newtonian fluids may be different.  相似文献   

20.
Foraging herbivores face twin threats of predation and parasite infection, but the risk of predation has received much more attention. We evaluated, experimentally, the role of olfactory cues in predator and parasite risk assessment on the foraging behaviour of a population of marked, free-ranging, red-necked wallabies (Macropus rufogriseus). The wallabies adjusted their behaviour according to these olfactory cues. They foraged less, were more vigilant and spent less time at feeders placed in the vicinity of faeces from dogs that had consumed wallaby or kangaroo meat compared with that of dogs feeding on sheep, rabbit or possum meat. Wallabies also showed a species-specific faecal aversion by consuming less food from feeders contaminated with wallaby faeces compared with sympatric kangaroo faeces, whose gastrointestinal parasite fauna differs from that of the wallabies. Combining both parasite and predation cues in a single field experiment revealed that these risks had an additive effect, rather than the wallabies compromising their response to one risk at the expense of the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号