首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The mRNA for rat liver serine dehydratase, a gluconeogenic enzyme, exhibits a circadian rhythm with a maximum at the onset of darkness marking the end of the fasting period and a minimum at the onset of light that marks the end of the feeding period, when rats have free access to food and water.In situ hybridization with an antisense cRNA probe revealed that serine dehydratase mRNA was localized in the periportal area of rat liver parenchyma in the evening, whereas it was scarce in the liver in the morning. The predominant localization of serine dehydratase mRNA in the periportal area also occurred in livers of rats that underwent laparotomy, glucagon and dexamethasone administration, and streptozotocin-induced diabetes mellitus, all of which are known to induce serine dehydratase mRNA levels remarkably. Immunostaining revealed that the localization of serine dehydratase protein agreed with that of succinate dehydrogenase, another enzyme known to be predominant in the periportal zone. Thus, the periportal serine dehydratase gene expression strongly supports the idea of metabolic zonation that gluconeogenesis from amino acids occurs preferentially in the periportal parenchyma of rat liver.  相似文献   

2.
3.
Serine dehydratase was induced in the kidneys of normal rats by the administration of either glucagon or dexamethasone. The increase in enzyme activity was associated with an increase in both enzyme protein and its mRNA, which were determined respectively by Western blot and RNA blot analysis. No apparent differences were observed between kidney and liver in the molecular weights of serine dehydratase proteins and the sizes of their mRNAs. Although kidney serine dehydratase was dramatically induced by either glucagon or dexamethasone, the liver enzyme was induced by glucagon but not by dexamethasone alone in the intact rat. On the other hand, liver serine dehydratase was induced in starvation, diabetes mellitus, and a high-protein diet. The kidney enzyme could not be induced under any of these conditions.  相似文献   

4.
In rat liver, serine dehydratase mRNA is undetectable in the late prenatal period, but its level increases rapidly after birth to a transient peak, and then after decrease gradually increases again to a maximum 2 weeks after birth that is slightly higher than that of adult liver. To determine whether mature quiescent hepatocytes proliferate without loss of differentiated functions, we measured the serine dehydratase mRNA contents in regenerating liver and primary cultured hepatocytes from adult rats. Partial hepatectomy resulted in a dramatic decrease in the mRNA content within 24 h and then its recovery within a week. In subconfluent cultures of adult rat hepatocytes that did not grow even in the presence of mitogens, serine dehydratase mRNA was maintained at a high level. However, when the hepatocytes were cultured at low cell density without added mitogens, their serine dehydratase mRNA content decreases to a quarter of that of subconfluent cultures. The possibility that the expression of serine dehydratase mRNA is regulated in G0/G1 transition before entry into the S phase and the relationship of the mRNA with growth are discussed.  相似文献   

5.
The capacity of the following peptides to stimulate steroidogenesis in suspensions of capsule (largely glomerulosa) and fasciculata/reticularis cells from rat adrenals was studied: ACTH1–24, ACTH1–13-amide, α-MSH, γ1-MSH, γ-MSH precursor, ACTH4–10, CLIP, and ovine and human β-lipotropin. Only α-MSH and ACTH1–13-amide stimulated glomerulosa cells alone, without effect on fasciculata/reticularis cells. Like ACTH1–24 the two samples of β-lipotropin stimulated both capsule and inner zone cell types in a similar manner. Their activity is attributable to slight ACTH1–39 contamination, as shown by HPLC fractionation. The other peptides lacked any activity. It is likely that the predicted specific glomerulosa stimulant from the pituitary closely resembles α-MSH.  相似文献   

6.
Sequence of the rat serine dehydratase gene.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

7.
8.
9.
Previous studies of serine dehydratase (EC 4.2.1.13) and ornithine aminotransferase (EC 2.6.1.13) adaptation in rat liver showed that in rats on a high protein diet, glucocorticoid administration increased serine dehydratase activity while simultaneously reducing the activity of ornithine aminotransferase. The present study examines the role of enzyme synthesis in the expression of these and other dissimilar adaptive characteristics of the two enzymes. Both enzymes were purified to crystallinity and used to prepare specific antibodies. Changes in the rate of synthesis of each enzyme during adaptation were then measured immunochemically. In rats fed ad libitum, the synthetic rates for both enzymes exhibited circadian rhythm, although enzyme levels remained relatively constant. The circadian cycle for ornithine aminotransferase synthesis was in phase with the cycles for body weight and relative liver weight (maxima at 9 a.m., minima at 9 p.m.) but was approximately 12 hours out of phase with the cycle for serine dehydratase synthesis. 9alpha-Fluoro-11beta, 21-dihydroxy-16alpha, 17alpha-isopted at 9 a.m., increased serine dehydratase synthesis and simultaneously decreased the synthesis of ornithine aminotransferase. When triamcinolone was injected at 9 p.m., however, serine dehydratase synthesis was not stimulated, although the reduction of ornithine aminotransferase synthesis was still produced. These results suggest that: (a) circadian cycling of synthesis may be a general phenomenon in enzyme regulation even though for enzymes with relatively long half-lives, such cycling may not be reflected as fluctuations in enzyme levels; (b) such circadian rhythmicity may also involve cyclic changes in the responsiveness of the enzyme-forming system to regulatory stimuli; (c) whereas the adaptive behavior of serine dehydratase typifies that of amino acid-catabolizing enzymes in general, the responses of ornithine aminotransferase denote a functional association of this enzyme with anabolic processes. On this basis, the possibility that ornithine aminotransferase plays a pivotal role in the regulation of urea cycle activity and nitrogen balance is discussed.  相似文献   

10.
The relative rates of ornithine aminotransferase (OAT) synthesis in vivo were studied by pulse-labeling rats with [4,5-3H]leucine, isolating the mitochondrial enzyme protein by immunoprecipitation with a monospecific antibody, dissociating the immunoprecipitates on sodium dodecyl sulfate-acrylamide gels, and determining the radioactivity in OAT. After 4 days of treatment with triiodothyronine (T3), both the enzyme activity level and the relative synthetic rate of OAT in rat kidney were elevated over twofold. The level of hepatic OAT activity was unaffected by this treatment. Thyroidectomy caused a 50% drop in the basal level of OAT activity and synthesis in kidney but not in liver. Although the basal levels of activity and synthesis of both renal and hepatic OAT were unaffected by adrenalectomy, the glucagon induction of the enzyme in liver was enhanced by about one-third and the T3 induction in kidney was suppressed 50% by this operation. After 4 days of treatment with estrogen, both the enzyme activity level and the relative synthetic rate of OAT in male rat kidney were elevated nearly 10-fold. Hepatic OAT activity and synthesis were unaffected by this regimen. Thyroidectomy almost completely abolished the estrogen induction of OAT in kidney. OAT induction by estrogen could be restored by treating thyroidectomized rats with T3. Simultaneous administration of T3 plus estrogen to intact rats produced a multiple effect, resulting in a striking 20-fold induction of renal OAT. Although administration of either T3 or estrogen causes an increase in the synthesis of immunoprecipitable OAT protein in rat kidney, each of these hormones may induce OAT by a different mechanism.  相似文献   

11.
12.
13.
14.
Yamada T  Komoto J  Takata Y  Ogawa H  Pitot HC  Takusagawa F 《Biochemistry》2003,42(44):12854-12865
SDH (L-serine dehydratase, EC 4.3.1.17) catalyzes the pyridoxal 5'-phosphate (PLP)-dependent dehydration of L-serine to yield pyruvate and ammonia. Liver SDH plays an important role in gluconeogenesis. Formation of pyruvate by SDH is a two-step reaction in which the hydroxyl group of serine is cleaved to produce aminoacrylate, and then the aminoacrylate is deaminated by nonenzymatic hydrolysis to produce pyruvate. The crystal structure of rat liver apo-SDH was determined by single isomorphous replacement at 2.8 A resolution. The holo-SDH crystallized with O-methylserine (OMS) was also determined at 2.6 A resolution by molecular replacement. SDH is composed of two domains, and each domain has a typical alphabeta-open structure. The active site is located in the cleft between the two domains. The holo-SDH contained PLP-OMS aldimine in the active site, indicating that OMS can form the Schiff base linkage with PLP, but the subsequent dehydration did not occur. Apo-SDH forms a dimer by inserting the small domain into the catalytic cleft of the partner subunit so that the active site is closed. Holo-SDH also forms a dimer by making contacts at the back of the clefts so that the dimerization does not close the catalytic cleft. The phosphate group of PLP is surrounded by a characteristic G-rich sequence ((168)GGGGL(172)) and forms hydrogen bonds with the amide groups of those amino acid residues, suggesting that the phosphate group can be protonated. N(1) of PLP participates in a hydrogen bond with Cys303, and similar hydrogen bonds with N(1) participating are seen in other beta-elimination enzymes. These hydrogen bonding schemes indicate that N(1) is not protonated, and thus, the pyridine ring cannot take a quinone-like structure. These characteristics of the bound PLP suggest that SDH catalysis is not facilitated by forming the resonance-stabilized structure of the PLP-Ser aldimine as seen in aminotransferases. A possible catalytic mechanism involves the phosphate group, surrounded by the characteristic sequence, acting as a general acid to donate a proton to the leaving hydroxyl group of serine.  相似文献   

15.
16.
17.
We have hypothesized that rat liver serine dehydratase (SDH) is induced in response to the amount of surplus amino acids from dietary protein. In the present study, we found that excess leucine intake strongly induced SDH activity in the liver but not in the kidney of rats. The increase in activity was accompanied by increases in the levels of SDH mRNA. On the other hand, isoleucine and valine had little effect on SDH induction. These results support our hypothesis and suggest that leucine is a signal for SDH induction.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号