首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Initiation of the coagulation protease cascade as it assembles on cell surfaces requires limited proteolytic activation of the zymogen factor X. Not previously suspected to be the ligand of an organizing receptor on cell surfaces, we now describe that factor X specifically associates with cells of monocyte lineage and we identify the high affinity receptor for this zymogen. Following stimulation with ADP (10 microM), or with the ionophore ionomycin (1 microM), isolated human monocytes bind 125I-factor X in a saturable fashion with a dissociation constant (Kd) of 21.8-44.9 nM. Equilibrium binding analyses indicate that the reaction is optimal at room temperature, requires Ca2+ ions, and saturates at 128,500 +/- 21,300 molecules of 125I-factor X specifically associated with the cell surface. Molar excess of unlabeled factor X inhibits and reverses the binding, whereas the homologous gamma-carboxylated coagulation proteins factors II, VII, IX, IXa, and Xa are without effect. Similarly, chelation of divalent ions immediately dissociates bound 125I-factor X. The monoblast cell line U 937 and the monocytic cell line THP-1 when stimulated with ADP or ionomycin, bind 125I-factor X with characteristics similar to monocytes. Receptor identity was explored using antibodies to the leukocyte adhesive receptors Mac-1, LFA-1, and p150.95. Monoclonal antibodies specific for the alpha subunit of Mac-1 (M 1/70, LM 2/1) or for the common beta subunit (TS 1/18, 60.3) bound equally to resting and ADP- or ionomycin-stimulated cells and also completely blocked the binding of 125I-factor X to stimulated monocytes, U 937, or THP-1 cells. To distinguish between modulatory effects of the monoclonal antibodies and direct spatial hindrance binding of 125I-factor X to Mac-1 was analyzed directly. OKM10 anti-alpha subunit of Mac-1 monoclonal antibody immunoprecipitated 125I-factor X chemically cross-linked to its receptor on stimulated cells. In addition, the complement protein fragment C3bi, which is a recognized ligand for Mac-1, competitively inhibited the association of 125I-factor X. These findings indicate that human blood monocytes and less differentiated cells of this lineage possess an inducible receptor specific for factor X; and also support the conclusion that the heterodimeric leukocyte adhesive receptor Mac-1 functions as the specific receptor structure. We suggest that the novel properties of this receptor may be of importance in the organization and regulation of certain coagulation protease cascades on the monocyte surface.  相似文献   

2.
Isolated peripheral blood monocytes and lymphocytes interact with Factor Va and Factor Xa to form a functional catalytic complex which proteolytically activates prothrombin to thrombin. The kinetics of prothrombin activation were monitored continuously using the fluorescent, reversible thrombin inhibitor, dansylarginine N-(3-ethyl-1,5-pentanediyl)amide, which displays enhanced fluorescence upon binding to thrombin. Incubation of monocytes or lymphocytes with prothrombin, the cofactor (Factor Va), and the enzyme (Factor Xa) in the presence of Ca2+ generated thrombin at rates/cell exceeding those previously obtained with either bovine or human platelets. The rate of thrombin generation by monocytes exceeded that of lymphocytes and increased as monocytes adhered to a surface. Monocyte prothrombinase activity appears to be mediated through interactions, whereby Factor Va forms a receptor for Factor Xa at the monocyte surface. Monocytes possess approximately 16,100 Factor Va binding sites with a dissociation constant (Kd) of 4 X 10(-11) M. In addition, isolated, well washed monocytes and lymphocytes, respectively, contain approximately 61,400 +/- 9,900 and 24,500 +/- 4,800 molecules of Factor V/cell as determined by radioimmunoassay. Bioassay data of mononuclear cell preparations paralleled the radioimmunoassay data. The Factor V associated with washed mononuclear cells appears to be intracellular and not membrane-associated. The release of Factor V, and perhaps other sequestered coagulation factors, by these immunoreactive cells at an inflammatory site, coupled with the ability of these cells to effect thrombin generation may explain the relationship between extravascular fibrin deposition and mononuclear cell accumulation in the pathogenesis of inflammatory lesions.  相似文献   

3.
A membrane-bound Ca2+-dependent complex of the cofactor Factor Va and the enzyme Factor Xa comprises the prothrombinase coagulation complex which catalyzes the proteolytic conversion of prothrombin to thrombin. Analyses of the kinetics of prothrombin activation permit calculation of the stoichiometry and binding parameters governing the functional interactions of Factor Va and Factor Xa with isolated thrombin-activated human platelets and isolated leukocyte subpopulations. Our kinetic approach indicates that Factor Xa binds to approximately 2700 +/- 1000 (n = 8) functional sites on the surface of thrombin-activated platelets with an apparent dissociation constant (Kd) equal to 1.18 +/- 0.53 X 10(-10) M and kcat equal to 19 +/- 7 mol of thrombin/s/mol of Factor Xa bound. The store of Factor V in normal platelets prevents an analogous determination of the functional Factor Va platelet binding sites. Factor Va and Factor Xa titrations performed using platelets from a Factor V antigen-deficient individual indicate that Factor Va and Factor Xa form a 1:1 stoichiometric complex on the surface of thrombin-activated platelets. Both binding isotherms are governed by the same apparent Kd (approximately equal to 10(-10) M) and expressed the same kcat/site (14-17 s-1. Factor Xa-platelet binding parameters are not altered by the use of different platelet agonists, the choice of anticoagulant, or platelet washing procedure. Kinetics of prothrombin activation indicate also that monocytes, lymphocytes, and neutrophils possess, respectively, 16,000, 45,000, and 8,000 Factor Va-Factor Xa receptor sites/cell, which are all governed by apparent KdS approximately equal to 10(-10) M. Enzymatic complexes bound to monocytes or neutrophils exhibit kcat values similar to the platelet-bound complex. Complexes bound to lymphocytes are only 25% as active.  相似文献   

4.
Mitogenesis, cell differentiation and immune-inflammatory responses are regulated by the coordinated assembly of proteases with specific cellular receptors. We have investigated the possibility that immune effector cells may express a high-affinity protease receptor. To address this hypothesis, we have generated mAb to factor V and its activated form Va, a circulating plasma protein that binds the serine protease of the coagulation cascade, factor Xa. Further, by flow microfluorimetry screening, we have isolated a panel of these mAb that recognize a surface molecule expressed on transformed monocytic cells. We now show that these mAb bind to blood monocytes, to CD3- CD16+ CD56+ NK cells, and with considerable heterogeneity, to neutrophils. A small subset of CD3+ cells (5 to 10%) was also identified by these probes and further phenotypically characterized by two-color flow microfluorimetry as predominantly coexpressing CD2, CD4 or CD8, CD57, CD11b, and alpha/beta TCR. This subset of CD3+ cells was expanded in vitro by both lectin- or Ag-specific stimulation. In addition, long term alloreactive stimulation resulted in approximately 8- to 10-fold increased expression of the molecule recognized by these mAb. Functional analyses were performed on a selected T cell clonal derivative of the transformed cell line HuT 78. These cells bound 125I-factor Xa in a specific reaction saturated at 194,000 +/- 26,000 molecules/cell with a Kd approximately 10 to 20 nM and inhibited by the mAb panel described above. These data suggest that immune effector cells express a dynamically regulated protease receptor that is immunologically related to the plasma coagulation protein factor V and its activated form Va. We propose the term effector cell protease receptor-1 to tentatively identify this molecule, and we speculate on its possible involvement in specialized protease-mediated effector functions.  相似文献   

5.
Activation of human factor V by factor Xa and thrombin   总被引:12,自引:0,他引:12  
D D Monkovic  P B Tracy 《Biochemistry》1990,29(5):1118-1128
The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by either autoradiography of 125I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of Mr 220,000 and 105,000. Although thrombin cleaved the Mr 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the Mr 220,000 peptide. The factor Xa dependent functional assessment of 125I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the Mr 220,000 peptide. This observation facilitated the study of the kinetics of factor V activation by allowing the activation of factor V to be monitored by the appearance of the Mr 220,000 peptide (factor Xa activation) or the Mr 105,000 peptide (thrombin activation). Factor Xa catalyzed activation of factor V obeyed Michaelis-Menten kinetics and was characterized by a Km of 10.4 nM, a kcat of 2.6 min-1, and a catalytic efficiency (kcat/Km) of 4.14 X 10(6) M-1 s-1. The thrombin-catalyzed activation of factor V was characterized by a Km of 71.7 nM, a kcat of 14.0 min-1, and a catalytic efficiency of 3.26 X 10(6) M-1 s-1. This indicates that factor Xa is as efficient an enzyme toward factor V as thrombin.  相似文献   

6.
Factor Xa is the enzymatically active constituent of the prothrombinase complex, which catalyzes the conversion of prothrombin to thrombin. We have isolated fragments, from tryptic digests of factor X, that consists of the gamma-carboxyglutamic acid (Gla) region linked to one or two epidermal growth factor (EGF)-like domains. Calcium ion binding measurements indicated that these fragments have a native conformation. The factor X-GlaEGF fragments inhibit factor Xa-induced blood clotting in a manner suggesting that they compete with factor Xa for phospholipid binding sites. The same conclusion was reached when thrombin generation was studied in a system of purified components (factor Xa, factor Va, prothrombin, phospholipid, and Ca2+). There was no evidence for a strong interaction between the EGF-like domains of factor Xa and factor Va in either system. However, experiments in the purified system without phospholipid indicated a direct, albeit weak, interaction between the Gla region of factor Xa and factor Va and between the COOH-terminal EGF-like domain of factor Xa and factor Va. Using domain-specific Fab fragments, we have confirmed that the conformation of the serine protease region alters dramatically upon activation of factor X. Furthermore, we have demonstrated that the conformation of the Gla region is affected by the activation, whereas the EGF-like domains appear to be unaltered. The association constant for factor X binding to endothelial cells was two orders of magnitude lower than that for binding of factor IX to these cells. Binding of the Gla and GlaEGF fragments suggested Gla-mediated binding to phospholipid rather than binding to a specific receptor.  相似文献   

7.
Thrombomodulin is an endothelial glycoprotein that serves as a cofactor for protein C activation. To examine the ligand specificity of human thrombomodulin, we performed equilibrium binding assays with human thrombin, thrombin S205A (wherein the active site serine is replaced by alanine), meizothrombin S205A, and human factor Xa. In competition binding assays with CV-1(18A) cells expressing cell surface recombinant human thrombomodulin, recombinant wild type thrombin and thrombin S205A inhibited 125I-diisopropyl fluorophosphate-thrombin binding with similar affinity (Kd = 6.4 +/- 0.5 and 5.3 +/- 0.3 nM, respectively). However, no binding inhibition was detected for meizothrombin S205A or human factor Xa (Kd greater than 500 nM). In direct binding assays, 125I-labeled plasma thrombin and thrombin S205A bound to thrombomodulin with Kd values of 4.0 +/- 1.9 and 6.9 +/- 1.2 nM, respectively. 125I-Labeled meizothrombin S205A and human factor Xa did not bind to thrombomodulin (Kd greater than 500 nM). We also compared the ability of thrombin and factor Xa to activate human recombinant protein C. The activation of recombinant protein C by thrombin was greatly enhanced in the presence of thrombomodulin, whereas no significant activation by factor Xa was detected with or without thrombomodulin. Similar results were obtained with thrombin and factor Xa when human umbilical vein endothelial cells were used as the source of thrombomodulin. These results suggest that human meizothrombin and factor Xa are unlikely to be important thrombomodulin-dependent protein C activators and that thrombin is the physiological ligand for human endothelial cell thrombomodulin.  相似文献   

8.
We have studied the binding of radioiodinated human factor VII and its activated form, factor VIIa, to monolayers of a human bladder carcinoma cell line (J82) that expresses functional cell surface tissue factor. The binding of factors VII and VIIa to these cells was found to be time-, temperature-, and calcium-dependent. In addition, the binding of each protein to J82 cells was specific, dose-dependent, and saturable. The binding isotherms for factors VII and VIIa were hyperbolic, and Scatchard plots of the binding data obtained at 37 degrees C indicated a single class of binding sites for each protein with Kd values of 3.20 +/- 0.51 and 3.25 +/- 0.31 nM, respectively. Factors VII and VIIa, respectively, interacted with 256,000 +/- 39,000 and 320,000 +/- 31,000 binding sites/cell. Competition experiments suggested a common receptor for factors VII and VIIa. Binding of factor VIIa to the cells was completely blocked by preincubation of the cells with polyclonal anti-tissue factor IgG, whereas binding of factor VII was inhibited approximately 90%, suggesting the presence of a small number of tissue factor-independent binding sites specific for factor VII on this cell. Functional studies revealed that factor X activation by increasing amounts of cell-bound factor VII or VIIa was hyperbolic in nature. Half-maximal rates of factor Xa formation occurred at factor VII and VIIa concentrations of 3.7 +/- 0.47 and 3.2 +/- 0.31 nM, respectively. No factor VII- or VIIa-mediated activation of factor X was observed when cells were preincubated with anti-tissue factor IgG. Two-chain 125I-factor VIIa recovered from the cells was identical to the offered ligand as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. In contrast, the offered single-chain 125I-factor VII was progressively converted to two-chain 125I-factor VIIa upon binding to the cells. When the J82 cells were pretreated with anti-tissue factor IgG, both factor VII recovered from the cells and factor VII in the supernatant were in the single-chain form, indicating that cell-surface tissue factor was essential for the activation of factor VII on these cells. These data indicate that binding of factor VII to tissue factor appears to be a prerequisite for its conversion to factor VIIa and the initiation of the extrinsic pathway of coagulation on these cells.  相似文献   

9.
The binding of [125I]-factor Xa to human umbilical vein endothelial cell (HUVEC) monolayers was studied. At 7°C, [125I]-factor Xa bound to a single class of binding sites with a dissociation constant value of 6.6 ± 0.8 nM and a binding site density of 57,460 ± 5,200 sites/cell (n = 3). Association and dissociation kinetics were of a pseudo-first order and gave association and dissociation rate constant values of 0.15 × 106 M-1 s-1 and 4.0 × 10-4 s-1, respectively. [125I]-factor Xa binding was inhibited by factor Xa but was not affected by factor X, thrombin or monoclonal antibodies against factor V, antithrombin-III or tissue factor pathway inhibitor (TFPI) but was inhibited by an antibody specific for the effector cell protease receptor-1 (EPR-1), a well-known receptor of factor Xa on various cell types. [125I]-factor Xa binding to HUVEC was not affected by various inhibitors of factor Xa such as DX 9065, pentasaccharide-antithrombin-III or TFPI. Factor Xa increased intracellular free calcium levels and phosphoinositide turnover in endothelial cells and, when added to HUVEC in culture, factor Xa was a potent mitogen, stimulating an increase in cell number at a 0.3 to 100 nM concentration. HUVEC-bound factor Xa promoted prothrombin activation in the presence of factor Va only. This effect was inhibited by both indirect and direct inhibitors of factor Xa. These findings indicate that HUVEC express functional high affinity receptors for factor Xa, related to EPR-1, which may be of importance in the regulation of coagulation and homeostasis of the vascular wall. J. Cell. Physiol. 172:36–43, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
A membrane-associated prothrombin activator (MAPA) was found on various cultured cells derived from non-hematopoietic cells [Sekiya, F. et al. (1994) J. Biol. Chem. 269, 32441-32445]. In this study, we investigated the enzymatic properties of this enzyme using protease inhibitors. While the metalloproteinase inhibitor, o-phenanthroline, had no effect, some Kunitz type serine protease inhibitors attenuated MAPA activity. Recombinant tissue factor pathway inhibitor (rTFPI) also markedly reduced the activity (IC(50), 1. 3+/-0.6 x 10(-10) M). MAPA activity is, therefore, most likely to be due to factor Xa. We evaluated the effect of exogenous factor Xa on MAPA activity. Factor Xa-dependent prothrombin activation was observed on fibroblast cells (apparent K(d), 1.47+/-0.72 nM). Activation was also observed on glial and neuronal cells, which expressed MAPA activity. These results imply that membrane-bound factor Xa results in MAPA activity on these cells. Therefore, we considered the involvement of factor Va, a component of prothrombinase, in this activity. We examined whether or not the prothrombinase complex is assembled on these cells. Prothrombin was activated in a manner dependent on both exogenous factor Xa and factor Va (apparent K(d) of 0.51-1.81 nM for factor Va). These results indicate that the prothrombinase complex forms specifically on various extravascular cells. Although the prothrombinase complex can be assembled on monocytes and lymphocytes, it is not known why these cells can activate prothrombin specifically. These cells which have the capacity for prothrombin activator activity could also activate factor X; i.e. cells with factor X activation activity were able to convert prothrombin. These observations suggest that thrombin was generated via two procoagulant activities; factor X activation and subsequent prothrombinase complex formation on the surface of these cells. This mechanism may explain the various pathological states involving or resulting from extravascular thrombin and fibrin formation.  相似文献   

11.
The rates of prothrombin activation under initial conditions of invariant concentrations of prothrombin and Factor Xa were studied in the presence of various combinations of Ca2+, homogeneous bovine Factor V, Factor Va, phosphatidylcholine-phosphatidylserine vesicles, and activated bovine platelets. Reactions were monitored continuously through the enhanced fluorescence accompanying the interaction of newly formed thrombin with dansylarginine-N-(3-ethyl-1,5-pentanediyl) amide. The complete prothrombinase (Factor Xa, Ca2+, phospholipid, and Factor Va) behaved as a "typical" enzyme and catalyzed the activation of prothrombin with an apparent Vmax of 2100 mol of thrombin/min/mol of Factor Va or Factor Xa, whichever was the rate-limiting component. Regardless of whether the enzymatic complex was composed of Factor Xa, Ca2+, and plasma Factor Va plus phospholipid vesicles, or activated platelets in the place of the latter components, similar specific activity values were observed. The combination of Factor Va, Ca2+, and phospholipid enhanced the rate of the Factor Xa-catalyzed activation of prothrombin by a factor of 278,000. Factor Va itself when added to Factor Xa, Ca2+, and phospholipid, enhanced the rate of prothrombin activation by a factor of 13,000. Unactivated Factor V appears to possess 0.27% of the procoagulant activity of thrombin-activated Factor Va. From the kinetics of prothrombinase activity, an interaction between Factor Xa and both Factor V and Factor Va was observed, with apparent 1:1 stoichiometries and dissociation constants of 7.3 x 10(-10) M for Factor Va and 2.7 x 10(-9) M for Factor V. The present data, combined with data on the equilibrium binding of prothrombinase components to phospholipid, indicate that the model prothrombinase described in this paper consists of a phospholipid-bound, stoichiometric complex of Factor Va and Factor Xa, with bound Factor Va serving as the "binding site" for Factor Xa, in concert with its proposed role in platelets.  相似文献   

12.
Activated coagulation factor V functions as a cofactor to factor Xa in the conversion of prothrombin to thrombin. Based on the introduction of extra carbohydrate side chains in recombinant factor V, we recently proposed several regions in factor Va to be important for factor Xa binding. To further define which residues are important for factor Xa binding, we prepared fifteen recombinant factor V variants in which clusters of charged amino acid residues were mutated, mainly to alanines. The factor V variants were expressed in COS-1 cells, and their functional properties evaluated in a prothrombinase-based assay, as well as in a direct binding test. Four of the factor V variants, 501A/510A/511D, 501A/510A/511D/513A, 513A/577A/578A, and 501A/510A/511D/513A/577A/578A exhibited markedly reduced factor Xa-cofactor activity tested in the prothrombinase assay, and reduced binding affinity as judged by the direct binding assay. These factor Va variants were normally cleaved at Arg-506 by activated protein C, and the interaction between the factor Xa-factor Va complex and prothrombin was unaffected by the introduced mutations. Based on the integration of all available data, we propose a key factor Xa binding surface to be centered on Arg-501, Arg-510, Ala-511, Asp-513, Asp-577, and Asp-578 in the factor Va A2 domain. These residues form an elongated charged factor Xa binding cluster on the factor Va surface.  相似文献   

13.
The prothrombinase complex consists of the protease factor Xa, Ca2+, and factor Va assembled on an anionic membrane. Factor Va functions both as a receptor for factor Xa and a positive effector of factor Xa catalytic efficiency and thus is key to efficient conversion of prothrombin to thrombin. The activation of the procofactor, factor V, to factor Va is an essential reaction that occurs early in the process of tissue factor-initiated blood coagulation; however, the catalytic sequence leading to formation of factor Va is a subject of disagreement. We have used biophysical and biochemical approaches to establish the second order rate constants and reaction pathways for the activation of phospholipid-bound human factor V by native and recombinant thrombin and meizothrombin, by mixtures of prothrombin activation products, and by factor Xa. We have also reassessed the activation of phospholipid-bound human prothrombin by factor Xa. Numerical simulations were performed incorporating the various pathways of factor V activation including the presence or absence of the pathway of factor V-independent prothrombin activation by factor Xa. Reaction pathways for factor V activation are similar for all thrombin forms. Empirical rate constants and the simulations are consistent with the following mechanism for factor Va formation. alpha-Thrombin, derived from factor Xa cleavage of phospholipid-bound prothrombin via the prethrombin 2 pathway, catalyzes the initial activation of factor V; generation of factor Va in a milieu already containing factor Xa enables prothrombinase formation with consequent meizothrombin formation; and meizothrombin functions as an amplifier of the process of factor V activation and thus has an important procoagulant role. Direct activation of factor V by factor Xa at physiologically relevant concentrations does not appear to be a significant contributor to factor Va formation.  相似文献   

14.
Cultured bovine aortic endothelial cells incubated with Factor Xa activate prothrombin. Factor V, synthesized by the endothelial cells, or plasma Factor V and calcium are required for the reaction. In the present study, it has been demonstrated that 125I-Factor Xa binds specifically to endothelial cells. In addition, the activation of prothrombin by Factor Xa and aortic endothelial cells has been further characterized. The binding of 125I-Factor Xa to endothelial cells was saturable and reversible. The equilibrium dissociation constant (Kd) for 125I-Factor Xa binding was 3.6 X 10(-9) M, with 39000 molecules bound per cell. 125I-Factor Xa, inactivated by diisopropylfluorophosphate did not bind specifically to endothelial cells, indicating that the active site of Factor Xa was required for binding. Factor Xa, but not activated protein C, competed with 125I-Factor Xa for binding. Autoradiograms of sodium dodecyl sulfate-polyacrylamide gels of cell lysates indicated that the radiolabeled material that bound to the cells had electrophoretic mobility identical to Factors Xa alpha and Xa beta. Although Factor X partially inhibited the binding of 125I-Factor Xa, Factor Xa did not inhibit the binding of 125I-Factor X, indicating that the zymogen and enzyme bound to different receptors. The relationship of the 125I-Factor Xa binding which was measured in these studies to aortic endothelial cell prothrombin activation is unclear since an anti-Factor V IgG blocked prothrombin activation but not Factor Xa binding. Additionally, 125I-Factor Xa binds to nonvascular cells; these cells do not activate prothrombin in the presence of Factor Xa. Moreover, the calcium requirements for each reaction and the saturation curves of 125I-Factor Xa binding and prothrombin activation differ. Although these data do not exclude a relationship between Factor Xa binding and prothrombin activation, the binding of 125I-Factor Xa to aortic endothelium measured in these studies may be related to a separate cellular function. To further characterize prothrombin activation by Factor Xa and endothelial cells, the rates of thrombin generation by intact bovine aorta or endothelial cells derived from this tissue were compared and were found to be equivalent. These data indicate that vascular endothelium may serve as a physiologic surface for hemostasis.  相似文献   

15.
The blood coagulation proteinase, thrombin, converts factor V into factor Va through a multistep activation pathway that is regulated by interactions with thrombin exosites. Thrombin exosite interactions with human factor V and its activation products were quantitatively characterized in equilibrium binding studies based on fluorescence changes of thrombin covalently labeled with 2-anilinonaphthalene-6-sulfonic acid (ANS) linked to the catalytic site histidine residue by Nalpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl ([ANS]FPR-thrombin). Exosite I was shown to play a predominant role in the binding of factor V and factor Va from the effect of the exosite I-specific ligand, hirudin54-65, on the interactions. Factor V and factor Va bound to exosite I of [ANS]FPR-thrombin with similar dissociation constants of 3.4 +/- 1.3 and 1.1 +/- 0.4 microM and fluorescence enhancements of 182 +/- 41 and 127 +/- 17%, respectively. Native thrombin and labeled thrombin bound with similar affinity to factor Va. Among factor V activation products, the factor Va heavy chain was shown to contain the site of exosite I binding, whereas exosite I-independent, lower affinity interactions were observed for activation fragments E and C1, and no detectable binding was observed for the factor Va light chain. The results support the conclusion that the factor V activation pathway is initiated by exosite I-mediated binding of thrombin to a site in the heavy chain region of factor V that facilitates the initial cleavage at Arg709 to generate the heavy chain of factor Va. The results further suggest that binding of thrombin through exosite I to factor V activation intermediates may regulate their conversion to factor Va and that similar binding of thrombin to the factor Va produced may reflect a mode of interaction involved in the regulation of prothrombin activation.  相似文献   

16.
The gamma-carboxyglutamic acid (Gla)-domain region of factor X (residues 1-44 of the light chain) was selectively removed by limited proteolysis with alpha-chymotrypsin. The Gla-domainless factor X was then activated by the factor X coagulant protein of Russell's viper venom. Apparent dissociation constants Kd' values for the interaction of factor Va with either factor Xa or Gla-domainless factor Xa were determined kinetically using prothrombin as the substrate. In the absence of phospholipid, factor Va interacted with Gla-domainless factor Xa with lower affinity (Kd' 4 X 10(-6) M) than with factor Xa (Kd' = 5 X 10(-8) M). At saturating concentrations of factor Va, maximal rates of thrombin formation were similar for either enzyme. The addition of phospholipid increased the affinity of factor Va for factor Xa approximately 75-fold (Kd' = 3.3 X 10(-10) M). In contrast, phospholipid had no effect on the affinity of Gla-domainless factor Xa for factor Va (Kd' = 4 X 10(-6) M). The maximal rate of thrombin formation increased approximately 300-fold with the addition of phospholipid to the factor Xa-factor Va system. Under the same conditions, phospholipid had no effect on the rate of thrombin formation when Gla-domainless factor Xa was the enzymatic moiety. These results demonstrate phospholipid has little or no effect on factor Va function when factor Xa has lost its Gla-mediated Ca2+-binding sites.  相似文献   

17.
Coagulation factor X, when activated to factor Xa by proteolytic cleavage, itself becomes an active serine protease which participates as a component of the macromolecular prothrombinase complex along with factor Va, phospholipid, and calcium ions. To identify specific structural regions on factor Xa responsible for mediating its function in activating prothrombin, we used 21 synthetic peptides corresponding to 65% of the primary structure of factor X as potential inhibitors of prothrombin activation. Using purified components, thrombin formation was inhibited by seven peptides in a dose-dependent noncompetitive manner. Antibodies to selected inhibitory peptides affinity purified on a factor Xa-agarose column inhibited thrombin formation in a dose-dependent manner, indicating that the corresponding regions on factor Xa are surface-exposed. Kinetic analyses varying the order of reagent addition suggested that peptides 211-222, 254-269, and 263-274 were highly effective in preventing the factor Xa-factor Va interaction. Peptides 275-287 and 415-425 were considered to derive from a distal region involved in substrate binding, based upon mixed inhibition kinetic analyses and assuming that inhibitory peptides not inhibitory in factor Va binding are related to a specific region of substrate interaction. Cross-linking studies confirmed that peptides 263-274 and 263-276 could bind specifically to the light chain of factor V/Va. These findings provide the basis for further pursuing the precise definition of interactive sites on factor Xa using site-directed mutagenesis and molecular modeling.  相似文献   

18.
Human factor VIII was purified from commercial factor VIII concentrate with a 12% yield. The specific coagulant activity of purified factor VIII was 8,000 units/mg. In the presence of SDS the purified factor VIII consisted of a variety of polypeptides on polyacrylamide gels, ranging between Mr 80,000 and Mr 208,000. In the absence of SDS the purified factor VIII showed an apparent molecular weight of 270,000 upon Sephadex G200 gel-filtration. The purified factor VIII could be activated by thrombin, which resulted in the disappearance of Mr 108,000-208,000 polypeptides in favor of an Mr 92,000 polypeptide. Treatment with factor Xa also activated factor VIII, whereas treatment with activated protein C resulted in the inactivation of coagulant activity. Coagulant-active 125I-factor VIII was prepared using a lactoperoxidase radioiodination procedure. This 125I-factor had the same characteristics as unlabeled factor VIII. All polypeptides could be precipitated with monoclonal antibodies directed against factor VIII. With 125I-factor VIII a pIapp of 5.7 was found in the presence of urea.  相似文献   

19.
Phosphatidylserine (PS) plays a crucial role, in the conversion of prothrombin into thrombin by the protease, factor Xa. Physiologically, the conversion occurs in the prothrombinase complex. The question of how water-soluble proteins that normally circulate in plasma bind remains to be unambiguously determined. We previously found that the amphitropic proteins (prothrombin, factors V and Va) penetrate into phospholipid layers. AC polarography has allowed the detection for the first time of insertion of factor Xa into condensed monolayers containing phosphatidylserine (PS) and phosphatidylcholine (PC) either 100% PS or 25% PS in the presence of Ca2+. This observation demonstrates that part of factor Xa can cross the phospholipid polar headgroup/hydrocarbon chain interface. In parallel experiments, radioactive surface measurements permitted measuring binding of tritium-labeled factor Xa onto a PS monolayer and calculate an association constant, 6x10(6) M(-1). Penetration of factor Xa into PS-containing vesicles was investigated also using photoactivable 5-[125I]iodonaphthalene-1-azide, which binds selectively to the lipid embedded domains of the protein. These experiments suggest that Factor Xa penetrates preferentially by its heavy chain, an alternative mode of binding to the commonly accepted binding via its Gla domain. Interaction of factor Xa with PS vesicles also changes its apparent K(m) for S 2222.  相似文献   

20.
The activation of human blood coagulation factor VII can occur by the feedback activity of either factor VIIa (autoactivation) or factor Xa. Both of these reactions are known to be enhanced by the presence of tissue factor, an integral membrane protein and the cofactor for factor VIIa. We examine here the activation of 125I-factor VII by both factor VIIa and factor Xa employing a mutant soluble form of tissue factor which has had its transmembrane and cytoplasmic domains deleted (sTF1-219). This mutant soluble tissue factor retains cofactor activity toward factor VIIa in a single-stage clotting assay but shows a strong dependence on initial plasma levels of factor VIIa (from 1 to 10,000 ng/ml) when compared to wild-type tissue factor. We show that this dependence is due to a deficiency of sTF1-219 in ability to both promote autoactivation and enhance the factor Xa-catalyzed activation of 125I-factor VII. sTF1-219 does not, however, inhibit the tissue factor-independent activation of 125I-factor VII by factor Xa. The results strongly suggest that the phospholipid anchoring region of tissue factor is essential for autoactivation and beneficial for factor Xa-catalyzed activation of 125I-factor VII. In addition, when taken together with the dependence of clotting times on initial factor VIIa levels observed with sTF1-219, these results indicate that factor VII autoactivation may be of greater importance in the initiation of blood coagulation via tissue factor than has been previously realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号