首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Siyanova  E. Yu.  Mirkin  S. M. 《Molecular Biology》2001,35(2):168-182
This review describes a novel type of genome instability, expansion of trinucleotide repeats. Originally discovered in 1991 upon cloning the gene responsible for the fragile X syndrome, it has proved to be a general phenomenon responsible for a growing number of human neurological disorders. Besides apparent medical importance, the discovery of trinucleotide repeat expansion unraveled a fundamental problem of human genetics: a non-Mendelian type of inheritance called anticipation. Understanding the mechanisms of repeat expansion and the molecular pathways leading from these expansions to human diseases became a formidable task for modern biology and one of its spectacular achievements. Here we discuss the major breakthroughs in this field made during the last decade, with an emphasis on molecular models of repeat expansion.  相似文献   

2.
Gaĭtskoki VS  Patkin EL 《Genetika》2000,36(7):869-886
The new data on the mechanisms underlying trinucleotide repeat expansion are reviewed with special reference to the role of chromatin structure, DNA replication, methylation, and amplification in repeat expansion during ontogeny. A hypothesis is advanced as to the crucial role of processes that occur at the preimplantation developmental stage, such as sister chromatid exchanges, single-strand DNA breaks, and demethylation. The molecular and cellular events responsible for association between trinucleotide expansion and various diseases are discussed.  相似文献   

3.
Trinucleotide repeat expansions are the genetic cause of numerous human diseases, including fragile X mental retardation, Huntington disease, and myotonic dystrophy type 1. Disease severity and age of onset are critically linked to expansion size. Previous mouse models of repeat instability have not recreated large intergenerational expansions ("big jumps"), observed when the repeat is transmitted from one generation to the next, and have never attained the very large tract lengths possible in humans. Here, we describe dramatic intergenerational CTG*CAG repeat expansions of several hundred repeats in a transgenic mouse model of myotonic dystrophy type 1, resulting in increasingly severe phenotypic and molecular abnormalities. Homozygous mice carrying over 700 trinucleotide repeats on both alleles display severely reduced body size and splicing abnormalities, notably in the central nervous system. Our findings demonstrate that large intergenerational trinucleotide repeat expansions can be recreated in mice, and endorse the use of transgenic mouse models to refine our understanding of triplet repeat expansion and the resulting pathogenesis.  相似文献   

4.
Trinucleotide repeat expansions are the genetic cause of numerous human diseases, including fragile X mental retardation, Huntington disease, and myotonic dystrophy type 1. Disease severity and age of onset are critically linked to expansion size. Previous mouse models of repeat instability have not recreated large intergenerational expansions (“big jumps”), observed when the repeat is transmitted from one generation to the next, and have never attained the very large tract lengths possible in humans. Here, we describe dramatic intergenerational CTG•CAG repeat expansions of several hundred repeats in a transgenic mouse model of myotonic dystrophy type 1, resulting in increasingly severe phenotypic and molecular abnormalities. Homozygous mice carrying over 700 trinucleotide repeats on both alleles display severely reduced body size and splicing abnormalities, notably in the central nervous system. Our findings demonstrate that large intergenerational trinucleotide repeat expansions can be recreated in mice, and endorse the use of transgenic mouse models to refine our understanding of triplet repeat expansion and the resulting pathogenesis.  相似文献   

5.
The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 and MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% had SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively.  相似文献   

6.
Familial amyloidotic polyneuropathy (FAP) is a lethal autosomal dominant type of amyloidosis resulting from the deposition of transthyretin (ATTR) variants in the peripheral and autonomic nervous systems. ATTR V30M-associated FAP exhibits marked genetic anticipation in some families, with clinical symptoms developing at an earlier age in successive generations. The genetic basis of this phenomenon in FAP is unknown. Anticipation has been associated with the dynamic expansion of trinucleotide repeats in several neurodegenerative disorders, such as Huntington disease, myotonic dystrophy, and fragile X syndrome. We have used the repeat expansion detection (RED) assay to screen affected members of Portuguese FAP kindreds for expansion of any of the ten possible trinucleotide repeats. Nine generational pairs with differences in their age of onset greater than 12 years and a control pair with identical ages of onset were tested. No major differences were found in the lengths of the ten trinucleotide repeats analyzed. The distribution of the maximal repeat sizes was consistent with reported studies in unrelated individuals with no known genetic disease. The present data do not support a role for trinucleotide repeat expansions as the molecular mechanism underlying anticipation in Portuguese FAP. Received: 13 December 1998 / Accepted: 23 March 1999  相似文献   

7.
脆性X综合征是常见的遗传性智力低下性疾病,其发病率高,临床表现复杂,遗传规律独特,对脆性X 综合征的发病机理和脆性X综合征筛查与诊断方法等方面的一些研究进展进行了综述.  相似文献   

8.
Patkin EL  Gaĭtskhoki VS 《Genetika》2000,36(9):1189-1194
The main possible molecular mechanisms of minisatellite DNA instability are reviewed and compared with those of the trinucleotide repeat instability. Evidence indicating that some human diseases are associated with minisatellite DNA instability is presented including data on minisatellite DNA expansion.  相似文献   

9.
Mini- and microsatellite expansions: the recombination connection   总被引:8,自引:0,他引:8       下载免费PDF全文
It is widely accepted that the large trinucleotide repeat expansions observed in many neurological diseases occur during replication. However, genetic recombination has emerged as a major source of instability for tandem repeats, including minisatellites, and recent studies raise the possibility that it may also be responsible for trinucleotide repeat expansions. We will review data connecting tandem repeat rearrangements and recombination in humans and in eukaryotic model organisms, and discuss the possible role of recombination in trinucleotide repeat expansions in human neurological disorders.  相似文献   

10.
Expansion of trinucleotide repeat DNA of the classes CAG-CTG, CGG-CCG and GAA-TTC are found to be associated with several neurodegenerative disorders. Different mechanisms have been attributed to the expansion of triplets, mainly involving the formation of alternate secondary structures by such repeats. This paper reports the molecular dynamics simulation of triplet repeat DNA sequences to study the basic structural features of DNA that are responsible for the formation of structures such as hairpins and slip-strand DNA leading to expansion. All the triplet repeat sequences studied were found to be more flexible compared to the control sequence unassociated with disease. Moreover, flexibility was found to be in the order CAG-CTG > CGG-CCG approximately GAA-TTC, the highly flexible CAG-CTG repeat being the most common cause of neurodegenerative disorders. In another simulation, a single G-C to T-A mutation at the 9th position of the CAG-CTG repeat exhibited a reduction in bending compared to the pure 15-mer CAG-CTG repeat. EPM1 dodecamer repeat associated with the pathogenesis of progressive myoclonus epilepsy was also simulated and showed flexible nature suggesting a similar expansion mechanism.  相似文献   

11.
Fragile X syndrome is a leading cause of mental retardation worldwide, with an incidence of approximately one case in 2000 live births. It is amongst the most common of human genetic diseases, and was the first to be associated with an unstable trinucleotide (CGG) repeat sequence. It is also characterized by a chromosomal fragile site which was the first of (now) four such sites to be identified at the molecular level. Each shows very similar features suggesting that other representatives of this type of fragile site will likely involve similar sequences. As with the other unstable trinucleotide repeats, the sequence at the fragile X locus is found to be remarkably unstable upon genetic transmission, however many features differ from the other repeats. As repeat expansion at the fragile X locus results in loss of expression of the co-resident FMR1 gene, the basis for clinical features is best understood in this disorder. Two additional fragile sites in the vicinity have been identified, and at least one of these is associated with mental retardation.  相似文献   

12.
Unusual expansion of trinucleotide repeats has been identified as a common mechanism of hereditary neurodegenerative diseases. Although the actual mechanism of repeat expansion remains uncertain, trinucleotide repeat instability may be related to the increased stability of an alternative DNA hairpin structure formed in the repeat sequences. Here we report that a synthetic ligand naphthyridine carbamate dimer (NCD) selectively bound to and stabilized an intra-stranded hairpin structure in CGG repeat sequences. The NCD-CGG hairpin complex was a stable structure that efficiently interfered with DNA replication by Taq DNA polymerase. Considering the sequence preference of NCD, the use of NCD would be valuable to investigate the genetic instabilities of CGG/CCG repeat sequences in human genomes.  相似文献   

13.
Fragile X syndrome (FXS) is the most common inheritable form of intellectual disability. FMR1, the gene responsible for FXS, is located on human chromosome Xq27.3 and contains a stretch of CGG trinucleotide repeats in its 5′ untranslated region. FXS is caused by CGG repeats that expand beyond 200, resulting in FMR1 silencing via promoter hypermethylation. The molecular mechanism underlying CGG repeat expansion, a fundamental cause of FXS, remains poorly understood, partly due to a lack of experimental systems. Accumulated evidence indicates that the large chromosomal region flanking a CGG repeat is critical for repeat dynamics. In the present study, we isolated and introduced whole human X chromosomes from healthy, FXS premutation carriers, or FXS patients who carried disease condition-associated CGG repeat lengths, into mouse A9 cells via microcell-mediated chromosome transfer. The CGG repeat length-associated methylation status and human FMR1 expression in these monochromosomal hybrid cells mimicked those in humans. Thus, this set of A9 cells containing CGG repeats from three different origins (FXS-A9 panel) may provide a valuable resource for investigating a series of genetic and epigenetic CGG repeat dynamics during FXS pathogenesis.  相似文献   

14.
Dynamic mutations in human genes result from unstable trinucleotide repeats embedded within the transcribed region. The changeable nature of these mutations from generation to generation is in contrast to the static inheritance of other single-gene mutational events, e.g. point mutations, deletions, insertions and inversions, typically associated with Mendelian inheritance patterns. Intergenerational instability of dynamic mutations within families has provided an explanation for the genetic anticipation, leading to increasing severity or earlier age of onset in successive generations, associated with certain inherited disorders. While models for genomic instability presume that trinucleotide repeat expansion results from disruption of the DNA replication process, experimental evidence has not yet been obtained in support of this contention. Nevertheless, examples of unstable trinucleotide repeats continue to increase, although not all are associated with a specific phenotype. Five disorders resulting from small-scale expansions of CAG repeats within the protein-coding region are known: spinobulbar muscular atrophy, Huntington’s disease, spinocerebellar ataxia type 1, dentatorubral-pallidoluysian atrophy (DRPLA) and Machado-Joseph disease. A sixth disorder, Haw River syndrome, is allelic to DRPLA. Five folate-sensitive chromosomal fragile sites characterized to date, viz. FRAXA, FRAXE, FRAXF, FRA11B and FRA16A, all have large-scale CGG repeat expansion. Two disorders, fragile X syndrome and FRAXE mental retardation, result from instability of CGG repeats in the 5’ untranslated region ofFMR1 andF M R2 genes respectively. FRA11B lies close to chromosome 1 1q deletion endpoints in many Jacobsen syndrome patients and may be related to the deletion event producing partial aneuploidy for 1lq. Expansion of FRAXF and FRA16A has not been associated with a phenotype. Myotonic dystrophy results from a large-scale CTG expansion in the 3’ untranslated region of the myotonin protein kinase gene while Friedreich’s ataxia has recently been found to have a large-scale GAA repeat in the first intron ofX25. This article reviews the characteristics of trinucleotide repeat disorders and summarizes current understanding of the molecular pathophysiology.  相似文献   

15.
Pathogenic RNA repeats: an expanding role in genetic disease   总被引:3,自引:0,他引:3  
Fragile X mental retardation and Friedreich's ataxia were among the first pathogenic trinucleotide repeat disorders to be described in which noncoding repeat expansions interfere with gene expression and cause a loss of protein production. Invoking a similar loss-of-function hypothesis for the CTG expansion causing myotonic dystrophy type 1 (DM1) located in the 3' noncoding portion of a kinase gene was more difficult because DM is a dominantly inherited multisystemic disorder in which the second copy of the gene is unaffected. However, the discovery that a transcribed but untranslated CCTG expansion causes myotonic dystrophy type 2 (DM2), along with other discoveries on DM1 and DM2 pathogenesis, indicate that the CTG and CCTG expansions are pathogenic at the RNA level. This review will detail recent developments on the molecular mechanisms of RNA pathogenesis in DM, and the growing number of expansion disorders that might involve similar pathogenic RNA mechanisms.  相似文献   

16.
17.
We have recently shown that the expression of the FRAXE fragile site in Xq28 is associated with the expansion of a GCC trinucleotide repeat. In the families studied, FRAXE expression is also associated with mild mental handicap. Here we present data on families that previously had been diagnosed as having the fragile X syndrome but that later were found to be negative for trinucleotide repeat expansion at the FRAXA locus. In these families we demonstrate the presence of a GCC trinucleotide repeat expansion at the FRAXE locus. Studies of the FRAXE locus of normal individuals show that they have 6-25 copies of the repeat, whereas affected individuals have > 200 copies. As in the fragile X syndrome, the amplified CpG residues are methylated in affected males.  相似文献   

18.
DNA trinucleotide repeats, particularly CXG, are common within the human genome. However, expansion of trinucleotide repeats is associated with a number of disorders, including Huntington disease, spinobulbar muscular atrophy and spinocerebellar ataxia. In these cases, the repeat length is known to correlate with decreased age of onset and disease severity. Repeat expansion of (CAG)n, (CTG)n and (CGG)n trinucleotides may be related to the increased stability of alternative DNA hairpin structures consisting of CXG-CXG triads with X-X mismatches. Small-molecule ligands that selectively bound to CAG repeats could provide an important probe for determining repeat length and an important tool for investigating the in vivo repeat extension mechanism. Here we report that napthyridine-azaquinolone (NA, 1) is a ligand for CAG repeats and can be used as a diagnostic tool for determining repeat length. We show by NMR spectroscopy that binding of NA to CAG repeats induces the extrusion of a cytidine nucleotide from the DNA helix.  相似文献   

19.
Rare folate-sensitive fragile sites are the archetypal trinucleotide repeats. Although the CAG repeat in the androgen receptor, associated with spinobulbar muscular atrophy, was the first to be published in 1991, it was the publication in the same year of the molecular basis of fragile X that focused much attention on trinucleotide repeat expansion as a mutational mechanism. A number of rare fragile sites have had their repeat elements characterised since that time. The so-called "folate-sensitive" fragile sites are likely to be all CCG repeat expansions similar to the fragile X. The folate insensitive fragile sites have more complex longer repeat elements. Only two rare fragile sites (FRAXA and FRAXE) are of unequivocal clinical significance in that they are associated with intellectual disability.  相似文献   

20.
潘学峰 《遗传学报》2006,33(1):1-11
与三核苷酸重复序列CAG.CTG、CGG·CCG和GAA·TTC扩增和缺失有关的分子机制尚不能得到清楚的阐释.体外研究表明,上述疾病相关的重复序列可以在体外形成non-B二级结构,并介导重复序列扩增.然而,迄今为止,类似的观察尚未在体内研究过程中得以实现.利用模型生物大肠杆菌和酵母等进行的有关研究并不能模拟三核苷酸重复序列的扩增,这暗示三核苷酸重复序列的体内扩增可能与重复序列形成non-B二级结构关联性并不大.尽管理论上较长的三核苷酸重复序列可以在复制和后复制过程中较易形成non-B DNA二级结构,但这样的二级结构倾向于导致重复序列出现"脆性",而不是扩增.事实上,患者所具有的三核苷酸重复序列扩增并非一定需要通过non-B二级结构的介导,这些重复序列的扩增是可以通过一种RNA转录诱导的局部DNA重复序列的复制和其后的DNA重排得以发生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号